238
Views
0
CrossRef citations to date
0
Altmetric
Review

Potential use of thermophilic bacteria for second-generation bioethanol production using lignocellulosic feedstocks: a review

&
Pages 851-864 | Received 09 Dec 2022, Accepted 22 Feb 2023, Published online: 06 Mar 2023

References

  • Liu H, Kumar V, Jia L, et al. Biopolymer poly-hydroxyalkanoates (PHA) production from apple industrial waste residues: a review. Chemosphere. 2021;284:131427.
  • Balat M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag. 2011;52:858–875.
  • Jambo SA, Abdulla R, Mohd Azhar SH, et al. A review on third generation bioethanol feedstock. Renew Sustain Energy Rev. 2016;65:756–769.
  • HOC. 2003. HOC. House of Commons EnvironmentFood and Rural Affairs Committee. Biofuels, Seventeenth Report, HC 929-I, London, UK.
  • Aditiya HB, Mahlia TMI, Chong WT, et al. Second generation bioethanol production: a critical review. Renew Sustain Energy Rev. 2016;66:631–653.
  • Krylova AY, Kozyukov EA, Lapidus AL. Ethanol and diesel fuel from plant raw materials: a review. Solid Fuel Chem. 2008;42:358–364.
  • Pirolini A. 2015. What is bioethanol?
  • OECD-FAO Agricultural Outlook 2021-2030. 2021. OECD-FAO Agricultural Outlook. OECD.
  • Liu H, Sun J, Chang J-S, et al. Engineering microbes for direct fermentation of cellulose to bioethanol. Crit Rev Biotechnol. 2018;38:1089–1105.
  • Gong C, Cao L, Fang D, et al. Genetic manipulation strategies for ethanol production from bioconversion of lignocellulose waste. Bioresour Technol. 2022;352:127105.
  • Gandam PK, Chinta ML, Pabbathi NPP, et al. Second-generation bioethanol production from corncob – a comprehensive review on pre-treatment and bioconversion strategies, including techno-economic and lifecycle perspective. Ind Crops Prod. 2022;186:115245.
  • Kim EJ, Kim S, Choi H-G, et al. Co-production of biodiesel and bioethanol using psychrophilic microalga chlamydomonas sp. KNM0029C isolated from Arctic Sea Ice. Biotechnol Biofuels. 2020;13:20.
  • Aro E-M. From first generation biofuels to advanced solar biofuels. Ambio. 2016;45 Suppl 1: S24–S31.
  • Farrell AE, Plevin RJ, Turner BT, et al. Ethanol can contribute to energy and environmental goals. Science. 2006;311(5760):506–508.
  • Tenenbaum DJ. Food vs. fuel: diversion of crops could cause more hunger. Environ Health Perspect. 2008;116(6):A254–A257.
  • Ahmed F, Yan Z, Bao J. Dry biodetoxification of acid pre-treated wheat straw for cellulosic ethanol fermentation. Bioresour Bioprocess. 2019;6:24.
  • Novy V, Krahulec S, Longus K, et al. Co-fermentation of hexose and pentose sugars in a spent sulfite liquor matrix with genetically modified Saccharomyces cerevisiae. Bioresour Technol. 2013;130:439–448.
  • Xu C, Qin Y, Li Y, et al. Factors influencing cellulosome activity in consolidated bioprocessing of cellulosic ethanol. Bioresour Technol. 2010;101:9560–9569.
  • Lynd LR, Grethlein HE, Wolkin RH. Fermentation of cellulosic substrates in batch and continuous culture by Clostridium thermocellum. Appl Environ Microbiol. 1989;55(12):3131–3139.
  • Arora R, Behera S, Kumar S. Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: a future perspective. Renew Sustain Energy Rev. 2015;51:699–717.
  • Ozkan M, Desai SG, Zhang Y, et al. Characterization of 13 newly isolated strains of anaerobic, cellulolytic, thermophilic bacteria. J Ind Microbiol Biotechnol. 2001;27(5):275–280.
  • Crespo C, Pozzo T, Nordberg Karlsson E, et al. Caloramator boliviensis sp. nov., a thermophilic, ethanol-producing bacterium isolated from a hot spring. Int J Syst Evol Microbiol. 2012a;62:1679–1686.
  • Sigurbjornsdottir MA, Orlygsson J. Combined hydrogen and ethanol production from sugars and lignocellulosic biomass by Thermoanaerobacterium AK54, isolated from hot spring. Appl Energy. 2012;97:785–791.
  • Singh N, Puri M, Tuli DK, et al. Bioethanol production potential of a novel thermophilic isolate thermoanaerobacter sp. DBT-IOC-X2 isolated from chumathang hot spring. Biomass Bioenergy. 2018b;116:122–130.
  • Koeck DE, Mechelke M, Zverlov VV, et al. Herbivorax saccincola gen. nov., sp. nov., a cellulolytic, anaerobic, thermophilic bacterium isolated via in sacco enrichments from a lab-scale biogas reactor. Int J Syst Evol Microbiol. 2016;66:4458–4463.
  • Koeck DE, Ludwig W, Wanner G, et al. Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol. 2015;65:2365–2371.
  • Ronan P, Yeung CW, Schellenberg J, et al. Bioresource technology a versatile and robust aerotolerant microbial community capable of cellulosic ethanol production. Bioresour Technol. 2013;129:156–163.
  • Singh N, Puri M, Tuli DK, et al. Bioethanol production by a xylan fermenting thermophilic isolate clostridium strain DBT-IOC-DC21. Anaerobe. 2018c;51:89–98.
  • Chang T, Shuo Y. Thermophilic, lignocellulolytic bacteria for ethanol production : current state and perspectives. Appl Microbiol Biotechnol. 2011;92:13–27.
  • Rogers P. Genetics and biochemistry of clostridium relevant to development of fermentation processes. In: Laskin AI, editor. Advances in Applied Microbiology. Academic Press; 1986. p. 1–60.
  • Scully SM, Orlygsson J. Recent advances in genetic engineering of thermophilic ethanol producing bacteria. In: Gosset G., editor. Engineering of microorganisms for the production of chemicals and biofuels from renewable resources. Springer; 2017. pp. 1–29.
  • Cunha JT, Soares PO, Baptista SL, et al. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: a review and perspectives on bioethanol production. Bioengineered. 2020;11:883–903.
  • Matsushika A, Inoue H, Kodaki T, et al. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol. 2009;84(1):37–53.
  • Singh N, Mathur AS, Tuli DK, et al. Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring. Biotechnol Biofuels. 2017;10:73.
  • Sai Ram M, Seenayya G. Ethanol production by Clostridium thermocellum SS8, a newly isolated thermophilic bacterium. Biotechnol Lett. 1989;11:589–592.
  • Lovitt RW, Longin R, Zeikus JG. Ethanol production by thermophilic bacteria: physiological comparison of solvent effects on parent and alcohol-tolerant strains of Clostridium thermohydrosulfuricum. Appl Environ Microbiol. 1984;48(1):171–177.
  • Larsen L, Nielsen P, Ahring BK. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland. Arch Microbiol. 1997;168:114–119.
  • Tsai T-L, Liu S-M, Lee S-C, et al. Ethanol production efficiency of an anaerobic hemicellulolytic thermophilic bacterium, strain NTOU1, isolated from a marine shallow hydrothermal vent in Taiwan. Microbes Environ. 2011;26:317–324.
  • Shang S, Qian L, Zhang X, et al. Themoanaerobacterium calidifontis sp. nov., a novel anaerobic, thermophilic, ethanol-producing bacterium from hot springs in China. Arch Microbiol. 2013;195(6):439–445.
  • Shaw AJ, Podkaminer KK, Desai SG, et al. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci U S A. 2008;105(37):13769–13774.
  • Crespo CF, Badshah M, Alvarez MT, et al. Ethanol production by continuous fermentation of d-(+)-cellobiose, d-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis. Bioresour Technol. 2012b;103:186–191.
  • Rahayu F, Tajima T, Kato J, et al. Ethanol yield and sugar usability in thermophilic ethanol production from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica. J Biosci Bioeng. 2020;129(2):160–164.
  • Tsakraklides V, Shaw AJ, Miller BB, et al. Carbon catabolite repression in Thermoanaerobacterium saccharolyticum. Biotechnol Biofuels. 2012;5:85.
  • Zhu M, Lu Y, Wang J, et al. Carbon catabolite repression and the related genes of ccpA, ptsH and hprK in Thermoanaerobacterium aotearoense. PLoS One. 2015;10:e0142121–e0142121.
  • Lynd LR. Production of ethanol from lignocellulosic materials using thermophilic bacteria: critical evaluation of potential and review BT - lignocellulosic materials. Berlin, Heidelberg: Springer; 1989. pp. 1–52.
  • Kim JH, Lee JC, Pak D. Feasibility of producing ethanol from food waste. Waste Manag. 2011;31:2121–2125.
  • Moreau A, Montplaisir D, Sparling R, et al. Hydrogen, ethanol and cellulase production from pulp and paper primary sludge by fermentation with Clostridium thermocellum. Biomass Bioenergy. 2015;72:256–262.
  • Waeonukul R, Kosugi A, Prawitwong P, et al. Novel cellulase recycling method using a combination of Clostridium thermocellum cellulosomes and Thermoanaerobacter brockii β-glucosidase. Bioresour Technol. 2013;130:424–430.
  • Singh N, Mathur AS, Gupta RP, et al. Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924⋆. Bioresour Technol. 2018a;250:860–867.
  • Dhiman SS, David A, Shrestha N, et al. Simultaneous hydrolysis and fermentation of unprocessed food waste into ethanol using thermophilic anaerobic bacteria. Bioresour Technol. 2017;244:733–740.
  • Bashir Z, Sheng L, Anil A, et al. Engineering Geobacillus thermoglucosidasius for direct utilisation of holocellulose from wheat straw. Biotechnol Biofuels. 2019;12:199.
  • Khalid A, Aslam M, Qyyum MA, et al. Membrane separation processes for dehydration of bioethanol from fermentation broths: recent developments, challenges, and prospects. Renew Sustain Energy Rev. 2019;105:427–443.
  • Vane LM, Alvarez FR, Huang Y, et al. Experimental validation of hybrid distillation-vapor permeation process for energy efficient ethanol–water separation. J Chem Technol Biotechnol. 2010;85:502–511.
  • Vane LM, Alvarez FR. Membrane-assisted vapor stripping: energy efficient hybrid distillation–vapor permeation process for alcohol–water separation. J Chem Technol Biotechnol. 2008;83:1275–1287.
  • Lamed RJ, Lobos JH, Su TM. Effects of stirring and hydrogen on fermentation products of Clostridium thermocellum. Appl Environ Microbiol. 1988;54(5):1216–1221.
  • Rydzak T, Levin DB, Cicek N, et al. End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405. Appl Microbiol Biotechnol. 2011;92(1):199–209.
  • Brynjarsdottir H, Wawiernia B, Orlygsson J. Ethanol production from sugars and complex biomass by thermoanaerobacter AK5: The effect of Electron-Scavenging systems on End-Product formation. Energy Fuels. 2012;26:4568–4574.
  • Bothun GD, Knutson BL, Berberich JA, et al. Metabolic selectivity and growth of clostridium thermocellum in continuous culture under elevated hydrostatic pressure. Appl Microbiol Biotechnol. 2004;65:149–157.
  • Mikkelsen MJ, Ahring BK. 2007. Thermoanaerobacter mathranii strain BGl. WO2007134607A1.
  • Cai Y, Lai C, Li S, et al. Disruption of lactate dehydrogenase through homologous recombination to improve bioethanol production in Thermoanaerobacterium aotearoense. Enzyme Microb Technol. 2011;48:155–161.
  • Williams-Rhaesa AM, Rubinstein GM, Scott IM, et al. Engineering redox-balanced ethanol production in the cellulolytic and extremely thermophilic bacterium, Caldicellulosiruptor bescii. Metab Eng Commun. 2018;7:1–9.
  • Tian L, Papanek B, Olson DG, et al. Simultaneous achievement of high ethanol yield and titer in Clostridium thermocellum. Biotechnol Biofuels. 2016;9:116.
  • Biswas R, Zheng T, Olson DG, et al. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol Biofuels. 2015;8:20.
  • Rydzak T, Lynd LR, Guss AM. Elimination of formate production in Clostridium thermocellum. J Ind Microbiol Biotechnol. 2015;42(9):1263–1272.
  • Argyros DA, Tripathi SA, Barrett TF, et al. High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol. 2011;77(23):8288–8294.
  • Holwerda EK, Olson DG, Ruppertsberger NM, et al. Metabolic and evolutionary responses of Clostridium thermocellum to genetic interventions aimed at improving ethanol production. Biotechnol Biofuels. 2020;13:40.
  • Holwerda EK, Thorne PG, Olson DG, et al. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading. Biotechnol Biofuels. 2014;7:155.
  • Rydzak T, Garcia D, Stevenson DM, et al. Deletion of type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum. Metab Eng. 2017;41:182–191.
  • van der Veen D, Lo J, Brown SD, et al. Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways. J Ind Microbiol Biotechnol. 2013;40:725–734.
  • Papanek B, Biswas R, Rydzak T, et al. Elimination of metabolic pathways to all traditional fermentation products increases ethanol yields in Clostridium thermocellum. Metab Eng. 2015;32:49–54.
  • Yao S, Mikkelsen MJ. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl Microbiol Biotechnol. 2010;88(1):199–208.
  • Hon S, Olson DG, Holwerda EK, et al. The ethanol pathway from Thermoanaerobacterium saccharolyticum improves ethanol production in Clostridium thermocellum. Metab Eng. 2017;42:175–184.
  • Cripps RE, Eley K, Leak DJ, et al. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng. 2009;11:398–408.
  • Herring CD, Kenealy WR, Shaw J, et al. Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood. Biotechnol. Biofuels. 2016; 9, 125.
  • Tian L, Perot SJ, Hon S, et al. Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase. Microb Cell Fact. 2017;16:171.
  • Lo J, Olson DG, Murphy SJ-L, et al. Engineering electron metabolism to increase ethanol production in Clostridium thermocellum. Metab Eng. 2017;39:71–79.
  • Shaw AJ, Covalla SF, Miller BB, et al. Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production. Metab Eng. 2012;14(5):528–532.
  • Fu H, Yang X, Qu C, et al. Enhanced ethanol production from lignocellulosic hydrolysates by inhibiting the hydrogen synthesis in Thermoanaerobacterium aotearoense SCUT27(δldh). J Chem Technol Biotechnol. 2019;94:3305–3314.
  • Herrero AA, Gomez RF. Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol. 1980;40(3):571–577.
  • Rani KS, Seenayya G. High ethanol tolerance of new isolates of Clostridium thermocellum strains SS21 and SS22. World J Microbiol Biotechnol. 1999;15:173–178.
  • Georgieva TI, Mikkelsen MJ, Ahring BK. High ethanol tolerance of the thermophilic anaerobic ethanol producer thermoanaerobacter BG1L1. Cent Eur J Biol. 2007;2:364–377.
  • Hild H, Stuckey D, Leak D. Effect of nutrient limitation on product formation during continuous fermentation of xylose with Thermoanaerobacter ethanolicus JW200 Fe(7). Appl. Microbiol Biotechnol. 2003;60:679–686.
  • Lynd LR, Baskaran S, Casten S. Salt accumulation resulting from base added for pH control, and not ethanol, limits growth of Thermoanaerobacterium thermosaccharolyticum HG-8 at elevated feed xylose concentrations in continuous culture. Biotechnol Prog. 2001;17(1):118–125.
  • Rahayu F, Kawai Y, Iwasaki Y, et al. Thermophilic ethanol fermentation from lignocellulose hydrolysate by genetically engineered Moorella thermoacetica. Bioresour Technol. 2017;245(Pt B):1393–1399.
  • Fong JCN, Svenson CJ, Nakasugi K, et al. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost. Extremophiles. 2006;10:363–372.
  • Baskaran S, Ahn H-J, Lynd LR. Investigation of the ethanol tolerance of Clostridium thermosaccharolyticum in continuous culture. Biotechnol Prog. 1995;11:276–281.
  • Herrero AA. End-product inhibition in anaerobic fermentations. Trends Biotechnol. 1983;1:49–53.
  • Lovitt RW, Shen GJ, Zeikus JG. Ethanol production by thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J Bacteriol. 1988;170(6):2809–2815.
  • Timmons MD, Knutson BL, Nokes SE, et al. Analysis of composition and structure of Clostridium thermocellum membranes from wild-type and ethanol-adapted strains. Appl Microbiol Biotechnol. 2009;82(5):929–939.
  • Williams TI, Combs JC, Lynn BC, et al. Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl Microbiol Biotechnol. 2007;74:422–432.
  • Shao X, Raman B, Zhu M, et al. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum. Appl Microbiol Biotechnol. 2011;92(3):641–652.
  • Brown SD, Guss AM, Karpinets TV, et al. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc NatlAcadSci USA. 2011;108:13752–13757.
  • Burdette DS, Jung S-H, Shen G-J, et al. Physiological function of alcohol dehydrogenases and long-chain (C(30)) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus. Appl Environ Microbiol. 2002;68:1914–1918.
  • Biswas R, Prabhu S, Lynd LR, et al. Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. PLoS One. 2014;9:e86389.
  • Tian L, Cervenka ND, Low AM, et al. A mutation in the AdhE alcohol dehydrogenase of Clostridium thermocellum increases tolerance to several primary alcohols, including isobutanol, n-butanol and ethanol. Sci Rep. 2019;9:1736
  • Zabed H, Sahu JN, Boyce AN, et al. Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sustain Energy Rev. 2016;66:751–774.
  • Das M, Patra P, Ghosh A. Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels. Renew Sustain Energy Rev. 2020;119:109562.
  • Rosales-Calderon O, Arantes V. A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnol Biofuels. 2019;12:240.
  • Dutta S, Kumar MS. Characterization of floral waste as potential candidates for compost and biofuel production. Biomass Convers Biorefinery. 2022. https://link.springer.com/article/10.1007/s13399-022-02353-z#citeas
  • Vohra M, Manwar J, Manmode R, et al. Bioethanol production: feedstock and current technologies. J Environ Chem Eng. 2014;2:573–584.
  • McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83(1):37–46.
  • Zabed H, Sahu JN, Suely A, et al. Bioethanol production from renewable sources: current perspectives and technological progress. Renew Sustain Energy Rev. 2017;71:475–501.
  • Prasad S, Singh A, Joshi HC. Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl. 2007;50:1–39.
  • Alvira P, Tomás-Pejó E, Ballesteros M, et al. Pre-treatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 2010;101(13):4851–4861.
  • Moreno AD, Ibarra D, Alvira P, et al. A review of biological delignification and detoxification methods for lignocellulosic bioethanol production. Crit Rev Biotechnol. 2015;35(3):342–354.
  • Gomes D, Gama M, Domingues L. Determinants on an efficient cellulase recycling process for the production of bioethanol from recycled paper sludge under high solid loadings. Biotechnol Biofuels. 2018;11:111.
  • Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci. 2012;38:449–467.
  • Ummalyma SB, Supriya RD, Sindhu R, et al. Chapter 7 - Biological pre-treatment of lignocellulosic biomass—current trends and future perspectives. In: Basile, A., Dalena, F. editors. Second and third generation of feedstocks: the evolution of biofuels. Elsevier; 2019. p. 197–212.
  • Poudel S, Cope AL, O'Dell KB, et al. Identification and characterization of proteins of unknown function (PUFs) in Clostridium thermocellum DSM 1313 strains as potential genetic engineering targets. Biotechnol Biofuels. 2021;14(1):116.,
  • Sudha Rani K, Swamy MV, Seenayya G. Production of ethanol from various pure and natural cellulosic biomass by Clostridium thermocellum strains SS21 and SS22. Process Biochem. 1998;33:435–440.
  • Yee KL, Rodriguez M, Hamilton CY, et al. 2015. Fermentation of dilute acid pretreated populus by Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis. BioEnergy Res. 8, 1014–1021.
  • Nisha M, Saranyah K, Shankar M, et al. Enhanced saccharification of lignocellulosic agricultural biomass and increased bioethanol titre using acclimated Clostridium thermocellum DSM1313. 3 Biotech. 2017;7(1):35.
  • Yee KL, Rodriguez M, Thompson OA, et al. Consolidated bioprocessing of transgenic switchgrass by an engineered and evolved Clostridium thermocellum strain. Biotechnol Biofuels. 2014;7:1–6.
  • Singh N, Mathur AS, Barrow CJ, et al. Influence of substrate loadings on the consolidated bioprocessing of rice straw and sugarcane bagasse biomass using Ruminiclostridium thermocellum. Bioresour Technol Rep. 2019;7:100138.
  • Verbeke TJ, Garcia GM, Elkins JG. The effect of switchgrass loadings on feedstock solubilization and biofuel production by Clostridium thermocellum. Biotechnol Biofuels. 2017;10:233.
  • Shao X, Murphy SJ, Lynd LR. Characterization of reduced carbohydrate solubilization during Clostridium thermocellum fermentation with high switchgrass concentrations. Biomass Bioenergy. 2020;139:105623.
  • Beri D, Herring CD, Blahova S, et al. Co-culture with hemicellulose-fermenting microbes reverses inhibition of corn fiber solubilization by Clostridium thermocellum at elevated solids loadings. Biotechnol Biofuels. 2021;14:24.
  • Beri D, York WS, Lynd LR, et al. Development of a thermophilic co-culture for corn fiber conversion to ethanol. Nat Commun. 2020;11(1):1937.
  • Pang J, Hao M, Li Y, et al. Consolidated bioprocessing using Clostridium thermocellum and Thermoanaerobacterium thermosaccharolyticum co-culture for enhancing ethanol production from corn straw. BioResources. 2018a;13:8209–8221.
  • Pang J, Hao M, Shi Y, et al. Enhancing the ethanol yield from salix using a Clostridium thermocellum and Thermoanaerobacterium thermosaccharolyticum co-culture system. BioResources. 2018b;13:5377–5393.
  • Reddy Y, H.k MS, Reddy DM, et al. Co-culture fermentation of banana agro-waste to ethanol by cellulolytic thermophilic Clostridium thermocellum CT2. Afr J Biotechnol. 2010;9:1926–1934.
  • Singh N, Gupta RP, Puri SK, et al. Bioethanol production from pre-treated whole slurry rice straw by thermophilic co-culture. Fuel. 2021;301:121074.
  • Xu L, Tschirner U. Improved ethanol production from various carbohydrates through anaerobic thermophilic co-culture. Bioresour Technol. 2011;102:10065–10071.
  • Xu L, Tschirner U. Immobilized anaerobic fermentation for bio-fuel production by clostridium co-culture. Bioprocess Biosyst Eng. 2014;37:1551–1559.
  • Jessen JE, Orlygsson J. Production of ethanol from sugars and lignocellulosic biomass by Thermoanaerobacter J1 isolated from a hot spring in Iceland. J Biomed Biotechnol. 2012;2012:186982.
  • Georgieva TI, Ahring BK. Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium thermoanaerobacter BG1L1. Appl Microbiol Biotechnol. 2007;77(1):61–68.
  • Georgieva TI, Mikkelsen MJ, Ahring BK. Ethanol production from wet-exploded wheat straw hydrolysate by thermophilic anaerobic bacterium thermoanaerobacter BG1L1 in a continuous immobilized reactor. Appl Biochem Biotechnol. 2008;145:99–110.
  • Haagensen F, Skiadas IV, Gavala HN, et al. Pre-treatment and ethanol fermentation potential of olive pulp at different dry matter concentrations. Biomass Bioenergy. 2009;33:1643–1651.
  • Tomás AF, Karagöz P, Karakashev D, et al. Extreme thermophilic ethanol production from rapeseed straw: using the newly isolated Thermoanaerobacter pentosaceus and combining it with Saccharomyces cerevisiae in a two-step process. Biotechnol Bioeng. 2013;110:1574–1582.
  • Moshi AP, Hosea KMM, Elisante E, et al. High temperature simultaneous saccharification and fermentation of starch from inedible wild cassava (manihot glaziovii) to bioethanol using Caloramator boliviensis. Bioresour Technol. 2015;180:128–136.
  • Almarsdottir AR, Sigurbjornsdottir MA, Orlygsson J. Effect of various factors on ethanol yields from lignocellulosic biomass by thermoanaerobacterium AK17. Biotechnol Bioeng. 2012;109(3):686–694.
  • Cai Y-H, Liang Z-X, Li S, et al. Bioethanol from fermentation of cassava pulp in a fibrous-bed bioreactor using immobilized δldh, a genetically engineered Thermoanaerobacterium aotearoense. Biotechnol Bioprocess Eng. 2012;17:1270–1277.
  • Qu C, Dai K, Fu H, et al. Enhanced ethanol production from lignocellulosic hydrolysates by Thermoanaerobacterium aotearoense SCUT27/ΔargR1864 with improved lignocellulose-derived inhibitors tolerance. Renew Energy. 2021;173:652–661.
  • Raita M, Ibenegbu C, Champreda V, et al. Biomass and bioenergy production of ethanol by thermophilic oligosaccharide utilising Geobacillus thermoglucosidasius TM242 using palm kernel cake as a renewable feedstock. Biomass Bioenergy. 2016;95: s89–S96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.