247
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance analysis, techno-economic and life cycle assessment of Jatropha curcas L. (Euphorbiaceae) seedcake gasification and Fischer-Tropsch integrated process for bio-methanol production

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 57-66 | Received 13 Apr 2023, Accepted 18 May 2023, Published online: 02 Jun 2023

References

  • Zeng S, Tanveer A, Fu X, et al. Modeling the influence of critical factors on the adoption of green energy technologies. Renew Sustain Energy Rev. 2022;168:112817.
  • Makepa DC, Chihobo CH, Musademba D. Advances in sustainable biofuel production from fast pyrolysis of lignocellulosic biomass. Biofuels. 2022;14(5):529–550.
  • Koh MY, Mohd. Ghazi TI. A review of biodiesel production from jatropha curcas L. oil. Renew Sustain Energy Rev. 2011;15(5):2240–2251.
  • Kan C. Sustainable rural biofuel strategy in Africa–Zimbabwe Case-Charles Kanyunga. IRENA: International Renewable Energy Agency; 2018;
  • Sangeetha B, Mohana Priya S, Pravin R, et al. Process optimization and technoeconomic assessment of biodiesel production by one-pot transesterification of Ricinus communis seed oil. Bioresour Technol. 2023;376:128880.
  • Gomes TG, Hadi SIIA, Costa Alves GS, et al. Current strategies for the detoxification of Jatropha curcas seed cake: a review. J Agric Food Chem. 2018;66(11):2510–2522.
  • Sansaniwal SK, Rosen MA, Tyagi SK. Global challenges in the sustainable development of biomass gasification: an overview. Renew Sustain Energy Rev. 2017;80:23–43.
  • Christodoulou C, Grimekis D, Panopoulos KD, et al. Circulating fluidized bed gasification tests of seed cakes residues after oil extraction and comparison with wood. Fuel. 2014;132:71–81.
  • Tijmensen MJA, Faaij APC, Hamelinck CN, et al. Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenergy. 2002;23(2):129–152.
  • Hamelinck CN, Faaij APC, den Uil H, et al. Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential. Energy. 2004;29(11):1743–1771.
  • Avella R, Cornacchia G, Matera DA. Liquid fuels from biomass and urban waste by integrated gasification-fischer tropsch process: economic evaluations. In International Conference on Bio-Fuels Vision. 2006;(1)
  • Hunpinyo P, Cheali P, Narataruksa P, et al. Alternative route of process modification for biofuel production by embedding the Fischer–Tropsch plant in existing stand-alone power plant (10MW) based on biomass gasification – part I: a conceptual modeling and simulation approach (a case study in Thail. Energy Convers Manag. 2014;88:1179–1192.
  • Abnisa F, Wan Daud WMA, Sahu JN. Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology. Biomass Bioenergy. 2011;35(8):3604–3616.
  • Ghani ZA, Khamil INM, Isa MRM, et al. “Pyrolysis of Jatropha curcas L. husk: optimization solid, liquid and gas yield by using response surface methodology (RSM). In 2011 3rd International Symposium & Exhibition in Sustainable Energy & Environment (ISESEE). 2011; 78–83.
  • Piloto-Rodríguez R, Tobío I, Ortiz-Alvarez M, et al. An approach to the use of Jatropha curcas by-products as energy source in agroindustry. Energy Sources, Part A Recover Util Environ Eff. 2020;42:1–21.
  • Alherbawi M, AlNouss A, Mckay G, et al. Optimum utilization of jatropha seedcake considering the energy, water and food nexus. In: Pierucci S, Manenti F, Bozzano GL, Manca DBT-CACE, editors. 30 European Symposium on Computer Aided Process Engineering. vol. 48. The Netherlands: Elsevier; 2020. p. 229–234.
  • Im-Orb K, Simasatitkul L, Arpornwichanop A. Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation. Energy. 2016;94:483–496.
  • Adeniyi AG, Ighalo JO. ASPEN plus predictive simulation of soft and hard wood pyrolysis for bio-energy recovery. IJEWM. 2020;26(2):234–244.
  • Kombe EY, Lang’at N, Njogu P, et al. Process modeling and evaluation of optimal operating conditions for production of hydrogen-rich syngas from air gasification of rice husks using aspen plus and response surface methodology. Bioresour Technol. 2022;361:127734.
  • Andersson J, Lundgren J, Marklund M. Methanol production via pressurized entrained flow biomass gasification – techno-economic comparison of integrated vs. stand-alone production. Biomass Bioenergy. 2014;64:256–268.
  • Borugadda VB, Kamath G, Dalai AK. Techno-economic and life-cycle assessment of integrated Fischer-Tropsch process in ethanol industry for bio-diesel and bio-gasoline production. Energy. 2020;195:116985.
  • Pandey U, Putta KR, Rout KR, et al. Conceptual design and techno-economic analysis of biomass to liquid processes. Front Energy Res. 2022;10:1–21.[Online]. https://doi.org/10.3389/fenrg.2022.993376
  • Kombe EY, Lang’at N, Njogu P, et al. Numerical investigation of sugarcane bagasse gasification using aspen plus and response surface methodology. Energy Convers Manag. 2022;254:115198.
  • Makepa DC, Chihobo CH, Ruziwa WR, et al. Microwave-assisted pyrolysis of pine sawdust: process modelling, performance optimization and economic evaluation for bioenergy recovery. Heliyon. 2023;9(3):e14688.
  • Zaman SA, Ghosh S. A generic input–output approach in developing and optimizing an Aspen plus steam-gasification model for biomass. Bioresour Technol. 2021;337:125412.
  • Wright MM, Daugaard DE, Satrio JA, et al. Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel. 2010;89: s 2–S10.
  • Maxwell C. Cost Indicies. Towering Skills 2022. [cited 2022 Dec 21]. https://www.toweringskills.com/financial-analysis/cost-indices/
  • Peters MS, Timmerhaus KD, West RE. Plant design and economics for chemical engineers, 5th ed., vol. 4. New York: McGraw-Hill; 2003.
  • Makepa DC, Chihobo CH, Ruziwa WR, et al. A systematic review of the techno-economic assessment and biomass supply chain uncertainties of biofuels production from fast pyrolysis of lignocellulosic biomass. Fuel Commun. 2023;14(1):100086.
  • Shen L, Gao Y, Xiao J. Simulation of hydrogen production from biomass gasification in interconnected fluidized beds. Biomass Bioenergy. 2008;32(2):120–127.
  • Duan W, Yu Q, Wang K, et al. ASPEN plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system. Energy Convers Manag. 2015;100:30–36.
  • Davis RE, Grundl N, Tao L, et al. Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels and coproducts: 2018 biochemical design case update; biochemical deconstruction and conversion of biomass to fuels and products via integrated biorefinery path. Golden, CO (United States): National Renewable Energy Lab (NREL), ; 2018.
  • Yang Z, Qian K, Zhang X, et al. Process design and economics for the conversion of lignocellulosic biomass into jet fuel range cycloalkanes. Energy. 2018;154:289–297.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.