130
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Hydroxy sulfonic acid catalyzed hydrolysis of cellulose

ORCID Icon, &
Pages 147-153 | Received 11 Mar 2023, Accepted 01 Jun 2023, Published online: 13 Jun 2023

References

  • Saravanan A, Kumar PS, Jeevanantham S, et al. Recent advances and sustainable development of biofuels production from lignocellulosic biomass. Bioresour Technol. 2022;344(Pt B):126203. https://dx.doi.org/10.1016/j.biortech.2021.126203.
  • Amarasekara AS. Handbook of cellulosic ethanol. NewYork: Wiley; 2013.
  • Fan L-T, Gharpuray MM, Lee Y-H. Cellulose hydrolysis. Vol. 3. Berlin: Springer Science & Business Media; 2012.
  • Camacho F, González‐Tello P, Jurado E, et al. Microcrystalline‐cellulose hydrolysis with concentrated sulphuric acid. J Chem Technol Biotechnol. 1996;67(4):350–356. https://dx.doi.org/10.1002/(SICI)1097-4660(199612)67:4<350::AID-JCTB564>3.0.CO;2-9.
  • Hu L, Lin L, Wu Z, et al. Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts. Appl Catal B: Environ. 2015;174–175:225–243. https://dx.doi.org/10.1016/j.apcatb.2015.03.003.
  • Huang YB, Fu Y. Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chem. 2013;15(5):1095–1111. https://dx.doi.org/10.1039/c3gc40136g.
  • Liu WY, Qi W, Zhou JS, et al. Research progress in cellulose hydrolysis by carbonaceous solid acid. Chem Ind Forest Product. 2015;35(1):138–144. https://dx.doi.org/10.3969/j.issn.0253-2417.2015.01.022.
  • Li C, Wang Q, Zhao ZK. Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem. 2008;10(2):177–182. https://dx.doi.org/10.1039/B711512A.
  • Amarasekara AS, Owereh OS. Hydrolysis and decomposition of cellulose in bron¨sted acidic ionic liquids under mild conditions. Ind Eng Chem Res. 2009;48(22):10152–10155. https://dx.doi.org/10.1021/ie901047u.
  • Da Costa Lopes AM, Bogel-Lukasik R. Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts. ChemSusChem. 2015;8(6):947–965. https://dx.doi.org/10.1002/cssc.201402950.
  • Amarasekara AS, Wiredu B. Chemocatalytic hydrolysis of cellulose at 37 °C, 1 atm. Catal Sci Technol. 2016;6(2):426–429. https://dx.doi.org/10.1039/C5CY01677K.
  • Amarasekara AS. Acidic ionic liquids. Chem Rev. 2016;116(10):6133–6183. https://dx.doi.org/10.1021/acs.chemrev.5b00763.
  • Amarasekara AS. Ionic liquids in biomass processing. Isr J Chem. 2019;59(9):789–802. https://dx.doi.org/10.1002/ijch.201800140.
  • Amarasekara AS, Wiredu B. Aryl sulfonic acid catalyzed hydrolysis of cellulose in water. Appl Catal A: Gen. 2012;417–418:259–262. https://dx.doi.org/10.1016/j.apcata.2011.12.048.
  • Mosier NS, Sarikaya A, Ladisch CM, et al. Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog. 2001;17(3):474–480. https://dx.doi.org/10.1021/bp010028u.
  • Zeng M, Pan X. Insights into solid acid catalysts for efficient cellulose hydrolysis to glucose: progress, challenges, and future opportunities. Catal Rev. 2022;64(3):445–490. https://dx.doi.org/10.1080/01614940.2020.1819936.
  • Wiredu B, Amarasekara AS. Synthesis of a silica-immobilized broensted acidic ionic liquid catalyst and hydrolysis of cellulose in water under mild conditions. Catal Commun. 2014;48:41–44. https://dx.doi.org/10.1016/j.catcom.2014.01.021.
  • Zhang Y, Li Q, Su J, et al. A green and efficient technology for the degradation of cellulosic materials: structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt. Bioresour Technol. 2015;177:176–181. https://dx.doi.org/10.1016/j.biortech.2014.11.085.
  • Liu L, Sun J, Cai C, et al. Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation. Bioresour Technol. 2009;100(23):5865–5871. https://dx.doi.org/10.1016/j.biortech.2009.06.048.
  • Peng L, Lin L, Zhang J, et al. Catalytic conversion of cellulose to levulinic acid by metal chlorides. Molecules. 2010;15(8):5258–5272. https://dx.doi.org/10.3390/molecules15085258.
  • Kamireddy SR, Li J, Tucker M, et al. Effects and mechanism of metal chloride salts on pretreatment and enzymatic digestibility of corn stover. Ind Eng Chem Res. 2013;52(5):1775–1782. https://dx.doi.org/10.1021/ie3019609.
  • Su J, Qiu M, Shen F, et al. Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst. Cellulose. 2018;25(1):17–22. https://dx.doi.org/10.1007/s10570-017-1603-4.
  • Kobayashi H, Fukuoka A. Development of solid catalyst-solid substrate reactions for efficient utilization of biomass. BCSJ. 2018;91(1):29–43. https://dx.doi.org/10.1246/bcsj.20170263.
  • To AT, Chung P-W, Katz A. Weak-acid sites catalyze the hydrolysis of crystalline cellulose to glucose in water: importance of post-synthetic functionalization of the carbon surface. Angew Chem Int Ed Engl. 2015;54(38):11050–11053. https://dx.doi.org/10.1002/anie.201504865.
  • Vilcocq L, Castilho PC, Carvalheiro F, et al. Hydrolysis of oligosaccharides over solid acid catalysts: a review. ChemSusChem. 2014;7(4):1010–1019. https://dx.doi.org/10.1002/cssc.201300720.
  • Pang J, Wang A, Zheng M, et al. Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chem Commun (Camb). 2010;46(37):6935–6937. https://dx.doi.org/10.1039/c0cc02014a.
  • Shrotri A, Kobayashi H, Fukuoka A. Cellulose depolymerization over heterogeneous catalysts. Acc Chem Res. 2018;51(3):761–768. https://dx.doi.org/10.1021/acs.accounts.7b00614.
  • Qin L, Ishizaki T, Takeuchi N, et al. Green sulfonation of carbon catalysts via gas–liquid interfacial plasma for cellulose hydrolysis. ACS Sustainable Chem Eng. 2020;8(15):5837–5846. https://dx.doi.org/10.1021/acssuschemeng.9b07156.
  • Van de Vyver S, Peng L, Geboers J, et al. Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem. 2010;12(9):1560–1563. https://dx.doi.org/10.1039/c0gc00235f.
  • Spinella S, Maiorana A, Qian Q, et al. Concurrent cellulose hydrolysis and esterification to prepare a surface-modified cellulose nanocrystal decorated with carboxylic acid moieties. ACS Sustainable Chem Eng. 2016;4(3):1538–1550. https://dx.doi.org/10.1021/acssuschemeng.5b01489.
  • Kobayashi H, Yabushita M, Hasegawa J-Y, et al. Synergy of vicinal oxygenated groups of catalysts for hydrolysis of cellulosic molecules. J Phys Chem C. 2015;119(36):20993–20999. https://dx.doi.org/10.1021/acs.jpcc.5b06476.
  • Amarasekara AS, Wiredu B, Lawrence YM. Hydrolysis and interactions of d-cellobiose with polycarboxylic acids. Carbohydr Res. 2019;475:34–38. https://dx.doi.org/10.1016/j.carres.2019.02.002.
  • Fernando H, Amarasekara SA. The effect of dicarboxylic acid catalyst structure on hydrolysis of cellulose model compound D-cellobiose in water. Curr Organocatal. 2021;8:1–1. https://dx.doi.org/10.2174/2213337208666211129090444.
  • Badger P. Ethanol from cellulose: a general review. Trend New Crops New Uses. 2002;14:17–21.
  • Amarasekara AS, Wiredu B. Degradation of cellulose in dilute aqueous solutions of acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride, and p-toluenesulfonic acid at moderate temperatures and pressures. Ind Eng Chem Res. 2011;50(21):12276–12280. https://dx.doi.org/10.1021/ie200938h.
  • Amarasekara AS, Shanbhag P. Degradation of untreated switchgrass biomass into reducing sugars in 1-(alkylsulfonic)-3-methylimidazolium bröensted acidic ionic liquid medium under mild conditions. Bioenerg Res. 2013;6(2):719–724. https://dx.doi.org/10.1007/s12155-012-9291-2.
  • Li C, Zhao ZK. Efficient acid‐catalyzed hydrolysis of cellulose in ionic liquid. Adv Synth Catal. 2007;349(11–12):1847–1850. https://dx.doi.org/10.1002/adsc.200700259.
  • Breuil C, Saddler JN. Comparison of the 3,5-dinitrosalicylic acid and Nelson-Somogyi methods of assaying for reducing sugars and determining cellulase activity. Enzym Microb Technol. 1985;7(7):327–332. https://dx.doi.org/10.1016/0141-0229(85)90111-5.
  • Becke A. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98(7):5648–5652. https://dx.doi.org/10.1063/1.464913.
  • Pople JA, Gill PM, Johnson BG. Kohn–Sham density-functional theory within a finite basis set. Chem Phys Lett. 1992;199(6):557–560. https://dx.doi.org/10.1016/0009-2614(92)85009-Y.
  • Stephens PJ, Devlin FJ, Chabalowski CF, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem. 1994;98(45):11623–11627. https://dx.doi.org/10.1021/j100096a001.
  • Montgomery JA, Jr Frisch MJ, Ochterski JW, et al. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys. 1999;110(6):2822–2827. https://dx.doi.org/10.1063/1.477924.
  • Montgomery JA, Jr Frisch MJ, Ochterski JW, et al. A complete basis set model chemistry. VII. Use of the minimum population localization method. J Chem Phys. 2000;112(15):6532–6542. https://dx.doi.org/10.1063/1.481224.
  • Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Rev. 2005;105(8):2999–3093. https://dx.doi.org/10.1021/cr9904009.
  • Amarasekara AS, Wiredu B. Acidic ionic liquid catalyzed one-pot conversion of cellulose to ethyl levulinate and levulinic acid in ethanol-water solvent system. Bioenerg Res. 2014;7(4):1237–1243. https://dx.doi.org/10.1007/s12155-014-9459-z.
  • Wiredu B, Dominguez JN, Amarasekara AS. The Co-catalyst effect of zeolites on acidic ionic liquid catalyzed one-pot conversion of cellulose to ethyl levulinate and levulinic acid in aqueous ethanol. CCAT. 2015;4(2):143–151. https://dx.doi.org/10.2174/2211544704666150727215943.
  • Cao B, Du J, Du D, et al. Cellobiose as a model system to reveal cellulose dissolution mechanism in acetate-based ionic liquids: density functional theory study substantiated by NMR spectra. Carbohydr Polym. 2016;149:348–356. https://dx.doi.org/10.1016/j.carbpol.2016.04.128.
  • Suzuki S, Takeoka Y, Rikukawa M, et al. Brønsted acidic ionic liquids for cellulose hydrolysis in an aqueous medium: structural effects on acidity and glucose yield. RSC Adv. 2018;8(26):14623–14632. https://dx.doi.org/10.1039/c8ra01950a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.