113
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Gut microbiota of cattle and horses and their use in the production of ethanol and lactic acid from timothy hay

ORCID Icon, &
Pages 291-301 | Received 07 Mar 2023, Accepted 15 Jul 2023, Published online: 20 Jul 2023

References

  • Du C, Nan X, Wang K, et al. Evaluation of the digestibility of steam-exploded wheat straw by ruminal fermentation, sugar yield and microbial structure in vitro. RSC Adv. 2019;9(71):41775–41782. doi: 10.1039/c9ra08167d.
  • Zhang Y, Vadlani PV. Lactic acid production from biomass-derived sugars via co-fermentation of Lactobacillus brevis and Lactobacillus plantarum. J Biosci Bioeng. 2015;119(6):694–699. doi: 10.1016/j.jbiosc.2014.10.027.
  • Rabee AE, Sayed Alahl AA, Lamara M, et al. Fibrolytic rumen bacteria of camel and sheep and their applications in the bioconversion of barley straw to soluble sugars for biofuel production. PLOS One. 2022;17(1):e0262304. doi: 10.1371/journal.pone.0262304.
  • Adelabu BA, Kareem SO, Oluwafemi F, et al. Bioconversion of corn straw to ethanol by cellulolytic yeasts immobilized in Mucuna urens matrix. J. King Saud Univ Sci. 2019;31(1):136–141. doi: 10.1016/j.jksus.2017.07.005.
  • Lin H-TV, Huang M-Y, Kao T-Y, et al. Production of lactic acid from seaweed hydrolysates via lactic acid bacteria fermentation. Fermentation. 2020;6(1):37. doi: 10.3390/fermentation6010037.
  • Raud M, Kikas T. Perennial grasses as a substrate for bioethanol production. Environ Clim Technol. 2020;24(2):32–40. doi: 10.2478/rtuect-2020-0052.
  • Bhujbal SK, Ghosh P, Vijay VK, et al. Biotechnological potential of rumen microbiota for sustainable bioconversion of lignocellulosic waste to biofuels and value-added products. Sci Total Environ. 2022;814:152773. doi: 10.1016/j.scitotenv.2021.152773.
  • Maki M, Leung KT, Qin W. The prospects of cellulose–producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci. 2009;5(5):500–516. doi: 10.7150/ijbs.5.500.
  • Park J, Kim EB. Differences in microbiome and virome between cattle and horses in the same farm. Asian-Australas J Anim Sci. 2020;33(6):1042–1055. doi: 10.5713/ajas.19.0267.
  • Baba Y, Matsuki Y, Mori Y, et al. Pretreatment of lignocellulosic biomass by cattle rumen fluid for methane production: bacterial flora and enzyme activity analysis. J Biosci Bioeng. 2017;123(4):489–496. doi: 10.1016/j.jbiosc.2016.11.008.
  • Luo L, Sriram S, Johnravindar D, et al. Effect of inoculum pretreatment on the microbial and metabolic dynamics of food waste dark fermentation. Bioresour Technol. 2022;358:127404. doi: 10.1016/j.biortech.2022.127404.
  • Sun Y, Li X, Wu L, et al. The advanced performance of microbial consortium for simultaneous utilization of glucose and xylose to produce lactic acid directly from dilute sulfuric acid pretreated corn stover. Biotechnol Biofuels. 2021;14(1):233. doi: 10.1186/s13068-021-02085-8.
  • Collinet A, Grimm P, Julliand S, et al. Sequential modulation of the equine fecal microbiota and fibrolytic capacity following two consecutive abrupt dietary changes and bacterial supplementation. Animals. 2021;11(5):1278. doi: 10.3390/ani11051278.
  • Biddle AS, Black SJ, Blanchard JL. An in vitro model of the horse gut microbiome enables identification of lactate-utilizing bacteria that differentially respond to starch induction. PLOS One. 2013;8(10):e77599. doi: 10.1371/journal.pone.0077599.
  • Dowd SE, Callaway TR, Wolcott RD, et al. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol. 2008;8:125. doi: 10.1186/1471-2180-8-125.
  • Ozbayram EG, Ince O, Ince B, et al. Comparison of rumen and manure microbiomes and implications for the inoculation of anaerobic digesters. Microorganisms. 2018;1:15. doi: 10.3390/microorganisms6010015.
  • Shakarami MH, Mohammadabadi T, Motamedi H, et al. Isolation and identification of cellulolytic bacteria from gastrointestinal tract of Arabian horse and investigation of their effect on the nutritional value of wheat straw. J Appl Microbiol. 2019;127(2):344–353. doi: 10.1111/jam.14251.
  • Zhang H, Zhang P, Ye J, et al. Comparison of various pretreatments for ethanol production enhancement from solid residue after rumen fluid digestion of rice straw. Bioresour Technol. 2018;247:147–156. doi: 10.1016/j.biortech.2017.09.065.
  • Kim TI, Jeong KH, Ham JS, et al. Isolation and characterization of cellulase secreting bacterium from cattle manure: application to composting. Compos Sci Util. 2004;12(3):242–248. doi: 10.1080/1065657X.2004.10702189.
  • Gupta KK, Aneja KR, Rana D. Current status of cow dung as a bioresource for sustainable development. Bioresour. Bioprocess. 2016;3(1):28. doi: 10.1186/s40643-016-0105-9.
  • McSweeney CS, Denman SE, Mackie RI, et al. Rumen bacteria. In: Makkar HP, editor. Methods in gut microbial ecology for ruminants. Dordrecht: Springer; 2005. doi: 10.1007/1-4020-3791-0_2.
  • Ghose TK. Measurement of cellulase activities. Pure Appl Chem. 1987;59(2):257–268. doi: 10.1351/pac198759020257.
  • Bailey MJ, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 1992;23(3):257–270. doi: 10.1016/0168-1656(92)90074-J.
  • AOAC. Association of official analytical chemists. Official methods of analysis. 16th ed. Arlington (VA): AOAC; 1997.
  • Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fibre, neutral detergent fibre and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74(10):3583–3597. doi: 10.3168/jds.S0022-0302(91)78551-2.
  • Liu X, Xu W, Mao L, et al. Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification. Sci Rep. 2016;6:20361. doi: 10.1038/srep20361.
  • Nocker A, Sossa-Fernandez P, Burr MD, et al. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol. 2007;73(16):5111–5117. doi: 10.1128/AEM.02987-06.
  • Drewes JL, White JR, Dejea CM, et al. High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia. NPJ Biofilms Microbiomes. 2017;3:34. doi: 10.1038/s41522-017-0040-3.
  • Callahan B, McMurdie P, Rosen M, et al. DADA2: high-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869.
  • Douglas GM, Maffei VJ, Zaneveld JR, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38(6):685–688. doi: 10.1038/s41587-020-0548-6.
  • Henderson G, Cox F, Ganesh S, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015;5:14567.
  • Kobayashi R, Nagaoka K, Nishimura N, et al. Comparison of the fecal microbiota of two monogastric herbivorous and five omnivorous mammals. Anim Sci J. 2020;91:e13366.
  • Budiansky S. The nature of horses. New York (NY): Simon and Schuster; 1997.
  • Hall JB. Nutrition and feeding of the cow-calf herd: digestive system of the cow. Blacksburg (VA): Virginia Cooperative Extension; 2001.
  • Hua D, Hendriks WH, Xiong B, et al. Starch and cellulose degradation in the rumen and applications of metagenomics on ruminal microorganisms. Animals. 2022;12(21):3020. doi: 10.3390/ani12213020.
  • Oyeleke SB, Okusanmi TA. Isolation and characterization of cellulose hydrolysing microorganism from the rumen of ruminants. Afr J Biotechnol. 2008;7:1503–1504.
  • Zhang L, Chung J, Jiang Q, et al. Characteristics of rumen microorganisms involved in anaerobic degradation of cellulose at various pH values. RSC Adv. 2017;7(64):40303–40310. doi: 10.1039/C7RA06588D.
  • Shil RK, Mojumder S, Sadida FF, et al. Isolation and identification of cellulolytic bacteria from the gut of three phytophagus insect species. Braz Arch Biol Technol. 2014;57(6):927–932. doi: 10.1590/S1516-8913201402620.
  • Zhao J, Shao T, Chen S, et al. Characterization and identification of cellulase-producing enterococcus species isolated from Tibetan yak (Bos grunniens) rumen and their application in various forage silages. J Appl Microbiol. 2021;131(3):1102–1112. doi: 10.1111/jam.15014.
  • Kamke J, Kittelmann S, Soni P, et al. Rumen metagenome and metatranscriptome analyses of low methane yield sheep reveals a Sharpea-enriched microbiome characterised by lactic acid formation and utilisation. Microbiome. 2016;4(1):56. doi: 10.1186/s40168-016-0201-2.
  • Koike S, Kobayashi Y. Fibrolytic rumen bacteria: their ecology and functions. Asian Australas J Anim Sci. 2009;22(1):131–138. doi: 10.5713/ajas.2009.r.01.
  • Nyonyo T, Shinkai T, Mitsumori M. Improved culturability of cellulolytic rumen bacteria and phylogenetic diversity of culturable cellulolytic and xylanolytic bacteria newly isolated from the bovine rumen. FEMS Microbiol Ecol. 2014;88(3):528–537. doi: 10.1111/1574-6941.12318.
  • Zhu Y, Wang C, Li F. Impact of dietary fiber/starch ratio in shaping caecal microbiota in rabbits. Can J Microbiol. 2015;61(10):771–784. doi: 10.1139/cjm-2015-0201.
  • Liu X, Mao B, Gu J, et al. Blautia–a new functional genus with potential probiotic properties? Gut Microbes. 2021;13(1):1–21. doi: 10.1080/19490976.2021.1875796.
  • Hartinger T, Pacífico C, Poier G, et al. Shift of dietary carbohydrate source from milk to various solid feeds reshapes the rumen and fecal microbiome in calves. Sci Rep. 2022;12(1):12383. doi: 10.1038/s41598-022-16052-2.
  • Fusco V, Quero GM, Cho G-S, et al. The genus weissella: taxonomy, ecology and biotechnological potential. Front Microbiol. 2015;6:155. doi: 10.3389/fmicb.2015.00155.
  • Kauter A, Epping L, Semmler T, et al. The gut microbiome of horses: current research on equine enteral microbiota and future perspectives. Anim Microbiome. 2019;1(1):14. doi: 10.1186/s42523-019-0013-3.
  • Mach N, Midoux C, Leclercq S, et al. Mining the equine gut metagenome: poorly-characterized taxa associated with cardiovascular fitness in endurance athletes. Commun Biol. 2022;5(1):1032. doi: 10.1038/s42003-022-03977-7.
  • Park T, Ma L, Ma Y, et al. Dietary energy sources and levels shift the multi-kingdom microbiota and functions in the rumen of lactating dairy cows. J Anim Sci Biotechnol. 2020;11:66. doi: 10.1186/s40104-020-00461-2.
  • Zhang YK, Zhang XX, Li FD, et al. Characterization of the rumen microbiota and its relationship with residual feed intake in sheep. Animal. 2021;15(3):100161. doi: 10.1016/j.animal.2020.100161.
  • Oss DB, Ribeiro GO Jr., Marcondes MI, et al. Synergism of cattle and bison inoculum on ruminal fermentation and select bacterial communities in an artificial rumen (RUSITEC) fed a barley straw based diet. Front Microbiol. 2016;7:2032. doi: 10.3389/fmicb.2016.02032.
  • Poszytek K, Ciezkowska M, Sklodowska A, et al. Microbial consortium with high cellulolytic activity (MCHCA) for enhanced biogas production. Front Microbiol. 2016;7:324. doi: 10.3389/fmicb.2016.00324.
  • Wongwatanapaiboon J, Kangvansaichol K, Burapatana V, et al. The potential of cellulosic ethanol production from grasses in Thailand. J Biomed Biotechnol. 2012;2012:303748. doi: 10.1155/2012/303748.
  • Zou L, Ouyang S, Hu Y, et al. Efficient lactic acid production from dilute acid-pretreated lignocellulosic biomass by a synthetic consortium of engineered Pseudomonas putida and Bacillus coagulans. Biotechnol Biofuels. 2021;14(1):227. doi: 10.1186/s13068-021-02078-7.
  • Mutreja R, Das D, Goyal D, et al. Bioconversion of agricultural waste to ethanol by SSF using recombinant cellulase from Clostridium thermocellum. Enzyme Res. 2011;2011:340279. doi: 10.4061/2011/340279.
  • Mudasir D, Afrin S, Kiran P, et al. Exploring the gut of Helicoverpa armigera for cellulose degrading bacteria and evaluation of a potential strain for lignocellulosic biomass deconstruction. Process Biochem. 2018;73:142–153. doi: 10.1016/j.procbio.2018.08.001.
  • Wongfaed N, O-Thong S, Sittijunda S, et al. Taxonomic and enzymatic basis of the cellulolytic microbial consortium KKU-MC1 and its application in enhancing biomethane production. Sci Rep. 2023;13(1):2968. doi: 10.1038/s41598-023-29895-0.
  • Zhang D, Wang Y, Zhang C, et al. Characterization of a thermophilic lignocellulose-degrading microbial consortium with high extracellular xylanase activity. J Microbiol Biotechnol. 2018;28(2):305–313. doi: 10.4014/jmb.1709.09036.
  • Shin SK, Hyeon JE, Kim YI, et al. Enhanced hydrolysis of lignocellulosic biomass: bi-functional enzyme complexes expressed in Pichia pastoris improve bioethanol production from Miscanthus sinensis. Biotechnol J. 2015;10(12):1912–1919. doi: 10.1002/biot.201500081.
  • de Souza Queiroz S, Jofre FM, dos Santos HA, et al. Xylitol and ethanol co-production from sugarcane bagasse and straw hemicellulosic hydrolysate supplemented with molasses. Biomass Conv Bioref. 2023;13(4):3143–3152. doi: 10.1007/s13399-021-01493-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.