189
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Microwave-assisted pyrolysis of pine sawdust (Pinus patula) with subsequent bio-oil transesterification for biodiesel production

ORCID Icon, &
Pages 317-325 | Received 07 Jun 2023, Accepted 18 Jul 2023, Published online: 04 Aug 2023

References

  • Ayub HMU, Ahmed A, Lam SS, et al. Sustainable valorization of algae biomass via thermochemical processing route: an overview. Bioresour Technol. 2022;344(Pt B):126399. doi: 10.1016/j.biortech.2021.126399.
  • Makepa DC, Chihobo CH, Ruziwa WR, et al. Microwave-assisted pyrolysis of pine sawdust: process modelling, performance optimization and economic evaluation for bioenergy recovery. Heliyon. 2023;9(3):e14688. doi: 10.1016/j.heliyon.2023.e14688.
  • Okedere OB, Fakinle BS, Sonibare JA, et al. Particulate matter pollution from open burning of sawdust in southwestern Nigeria. Cogent Environ Sci. 2017;3(1):1367112. Jan. doi: 10.1080/23311843.2017.1367112.
  • Liu SD, et al. Mitigation of fisheries impacts from the use and disposal of wood residue in British Columbia and the Yukon Canadian technical report of fisheries and aquatic sciences 2296. Citeseer, 1999.
  • Sınağ A, Uskan B, Gülbay S. Detailed characterization of the pyrolytic liquids obtained by pyrolysis of sawdust. J Anal Appl Pyrolysis. 2011;90(1):48–52. doi: 10.1016/j.jaap.2010.10.003.
  • Naureen R, Tariq M, Yusoff I, et al. Synthesis, spectroscopic and chromatographic studies of sunflower oil biodiesel using optimized base catalyzed methanolysis. Saudi J Biol Sci. 2015;22(3):332–339. doi: 10.1016/j.sjbs.2014.11.017.
  • Bharath G, Hai A, Rambabu K, et al. Systematic production and characterization of pyrolysis-oil from date tree wastes for bio-fuel applications. Biomass Bioenergy. 2020;135:105523. doi: 10.1016/j.biombioe.2020.105523.
  • Khelfa A, Rodrigues FA, Koubaa M, et al. Microwave-Assisted pyrolysis of pine wood sawdust mixed with activated carbon for bio-oil and bio-char production. Processes. 2020;8(11):1437. doi: 10.3390/pr8111437.
  • Costa VJ, Vieira RM, Girotto SBFT, et al. Pyrolysis and thermogravimetry of blended and nonblended residues of pine and eucalyptus forestry woods. Environ Prog Sustainable Energy. 2016;35(5):1521–1528. doi: 10.1002/ep.12372.
  • Makepa DC, Chihobo CH, Ruziwa WR, et al. A systematic review of the techno-economic assessment and biomass supply chain uncertainties of biofuels production from fast pyrolysis of lignocellulosic biomass. Fuel Commun. 2023;14:100086. doi: 10.1016/j.jfueco.2023.100086.
  • Pootakham T, Kumar A. Bio-oil transport by pipeline: a techno-economic assessment. Bioresour Technol. 2010;101(18):7148–7154. doi: 10.1016/j.biortech.2010.03.136.
  • Mutsengerere S, Chihobo CH, Musademba D, et al. A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass. Renew Sustain Energy Rev. 2019;104:328–336. doi: 10.1016/j.rser.2019.01.030.
  • Fernández Y, Arenillas A, Díez MA, et al. Pyrolysis of glycerol over activated carbons for syngas production. J Anal Appl Pyrolysis. 2009;84(2):145–150. doi: 10.1016/j.jaap.2009.01.004.
  • Pinheiro Pires AP, Arauzo J, Fonts I, et al. Challenges and opportunities for bio-oil refining: a review. Energy Fuels. 2019;33(6):4683–4720. doi: 10.1021/acs.energyfuels.9b00039.
  • Cheng S, Wei L, Julson J, et al. Catalytic liquefaction of pine sawdust for biofuel development on bifunctional Zn/HZSM-5 catalyst in supercritical ethanol. J Anal Appl Pyrolysis. 2017;126:257–266. doi: 10.1016/j.jaap.2017.06.001.
  • Xiong M, Huang J, He X, et al. Evaluation of bio-oil/biodiesel production from co-pyrolysis of corn straw and natural hair: a new insight towards energy recovery and waste biorefinery. Fuel. 2023;331:125710. doi: 10.1016/j.fuel.2022.125710.
  • Zhang X, Lei H, Chen S, et al. Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review. Green Chem. 2016;18(15):4145–4169. doi: 10.1039/C6GC00911E.
  • Nomanbhay S, Salman B, Hussain R, et al. Microwave pyrolysis of lignocellulosic biomass––a contribution to power africa. Energy Sustain Soc. 2017;7(1):1–24.
  • Adeniyi AG, Ighalo JO, Eletta OAA. Process integration and feedstock optimisation of a Two-Step biodiesel production process from Jatropha curcas using aspen plus. 2019;14(2):20180055. doi: 10.1515/cppm-2018-0055.
  • Abnisa F, Arami-Niya A, Daud WMAW, et al. Characterization of bio-oil and bio-char from pyrolysis of palm oil wastes. Bioenerg Res. 2013;6(2):830–840. doi: 10.1007/s12155-013-9313-8.
  • Omar R, Idris A, Yunus R, et al. Characterization of empty fruit bunch for microwave-assisted pyrolysis. Fuel. 2011;90(4):1536–1544. doi: 10.1016/j.fuel.2011.01.023.
  • Mullen CA, Boateng AA. Chemical composition of bio-oils produced by fast pyrolysis of two energy crops †. Energy Fuels. 2008;22(3):2104–2109. doi: 10.1021/ef700776w.
  • Parascanu MM, Sandoval-Salas F, Soreanu G, et al. Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes. Renew Sustain Energy Rev. 2017;71:509–522. doi: 10.1016/j.rser.2016.12.079.
  • Eke J, Onwudili JA, Bridgwater AV. Influence of moisture contents on the fast pyrolysis of trommel fines in a bubbling fluidized bed reactor. Waste Biomass Valor. 2020;11(7):3711–3722. doi: 10.1007/s12649-018-00560-2.
  • Du Z, Li Y, Wang X, et al. Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour Technol. 2011;102(7):4890–4896. doi: 10.1016/j.biortech.2011.01.055.
  • Bassam NE. Handbook of bioenergy crops: a complete reference to species, development and applications. United Kingdom: Routledge, 2010.
  • Chen D, Yin L, Wang H, et al. Pyrolysis technologies for municipal solid waste: a review. Waste Manag. 2014;34(12):2466–2486. doi: 10.1016/j.wasman.2014.08.004.
  • Chong CT, Mong GR, Ng J-H, et al. Pyrolysis characteristics and kinetic studies of horse manure using thermogravimetric analysis. Energy Convers Manag. 2019;180:1260–1267. doi: 10.1016/j.enconman.2018.11.071.
  • Chihobo CH, Chowdhury A, Kuipa PK, et al. Pyrolysis characteristics and kinetics of acid tar waste from crude benzol refining: a thermogravimetry–mass spectrometry analysis. Waste Manag Res. 2016;34(12):1258–1267. Oct doi: 10.1177/0734242X16669999.
  • Marangwanda GT, Madyira DM, Ndungu PG, et al. Combustion characterisation of bituminous coal and pinus sawdust blends by use of Thermo-Gravimetric analysis. Energies. 2021;14(22):7547. doi: 10.3390/en14227547.
  • Laougé ZB, Merdun H. Investigation of thermal behavior of pine sawdust and coal during co-pyrolysis and co-combustion. Energy. 2021;231:120895. doi: 10.1016/j.energy.2021.120895.
  • Bach QV, Chen WH. Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): a state-of-the-art review. Bioresour Technol. 2017;246:88–100. doi: 10.1016/j.biortech.2017.06.087.
  • Koskela A, Heikkilä A, Bergna D, et al. Effects of briquetting and high pyrolysis temperature on hydrolysis lignin char properties and reactivity in CO-CO2-N2 conditions. Minerals. 2021;11(2):187. doi: 10.3390/min11020187.
  • Mullen CA, Boateng AA, Goldberg NM, et al. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenergy. 2010;34(1):67–74. doi: 10.1016/j.biombioe.2009.09.012.
  • Lam SS, Chase HA. A review on waste to energy processes using microwave pyrolysis. Energies. 2012;5(10):4209–4232. doi: 10.3390/en5104209.
  • Raheem A, Wan Azlina WAKG, Taufiq Yap YH, et al. Thermochemical conversion of microalgal biomass for biofuel production. Renew Sustain Energy Rev. 2015;49:990–999. doi: 10.1016/j.rser.2015.04.186.
  • Echresh Zadeh Z, Abdulkhani A, Saha B. Characterization of fast pyrolysis Bio-Oil from hardwood and softwood lignin. Energies. 2020;13(4):887. doi: 10.3390/en13040887.
  • Encinar JM, González JF, González J. Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions. Fuel Process Technol. 2000;68(3):209–222. doi: 10.1016/S0378-3820(00)00125-9.
  • Oyebanji JA, Okekunle PO, Lasode OA, et al. Chemical composition of bio-oils produced by fast pyrolysis of two energy biomass. Biofuels. 2018;9(4):479–487. doi: 10.1080/17597269.2017.1284473.
  • Cha JS, Park SH, Jung S-C, et al. Production and utilization of biochar: a review. J Ind Eng Chem. 2016;40:1–15. doi: 10.1016/j.jiec.2016.06.002.
  • Makepa DC, Chihobo CH, Musademba D. Advances in sustainable biofuel production from fast pyrolysis of lignocellulosic biomass. Biofuels. 2023;14(5):529–550. doi: 10.1080/17597269.2022.2151459.
  • Xu Y, Hu X, Li W, et al. Preparation and characterization of bio-oil from biomass. In: Shaukat S, editor. Progress in biomass and bioenergy production. Rijeka, Croatia: InTech; 2011. pp. 197–222. doi: 10.5772/16466.
  • Sakthivel R, Ramesh K, Purnachandran R, et al. A review on the properties, performance and emission aspects of the third generation biodiesels. Renew Sustain Energy Rev. 2018;82:2970–2992. doi: 10.1016/j.rser.2017.10.037.
  • Lahijani P, Mohammadi M, Mohamed AR, et al. Upgrading biomass-derived pyrolysis bio-oil to bio-jet fuel through catalytic cracking and hydrodeoxygenation: a review of recent progress. Energy Convers Manag. 2022;268:115956. doi: 10.1016/j.enconman.2022.115956.
  • Prismantoko A, Hilmawan E, Darmawan A, Aziz M, “Effectiveness of different additives on slagging and fouling tendencies of blended coal,” J Energy Inst. 2023;107:101192. doi: 10.1016/j.joei.2023.101192.
  • Wang S, Zhao S, Uzoejinwa BB, et al. A state-of-the-art review on dual purpose seaweeds utilization for wastewater treatment and crude bio-oil production. Energy Convers Manag. 2020;222:113253. doi: 10.1016/j.enconman.2020.113253.
  • Liu C, Wang H, Karim AM, et al. Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev. 2014;43(22):7594–7623. doi: 10.1039/c3cs60414d.
  • Alsbou E, Helleur B. Accelerated aging of bio-oil from fast pyrolysis of hardwood. Energy Fuels. 2014;28(5):3224–3235. doi: 10.1021/ef500399n.
  • Lu Q, Yang XL, Zhu XF. Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J Anal Appl Pyrolysis. 2008;82(2):191–198. doi: 10.1016/j.jaap.2008.03.003.
  • Makarfi Isa Y, Ganda ET. Bio-oil as a potential source of petroleum range fuels. Renew Sustain Energy Rev. 2018;81:69–75. doi: 10.1016/j.rser.2017.07.036.
  • Mohamad M, Ngadi N, Wong SL, et al. Prediction of biodiesel yield during transesterification process using response surface methodology. Fuel. 2017;190:104–112. doi: 10.1016/j.fuel.2016.10.123.
  • Elango RK, Sathiasivan K, Muthukumaran C, et al. Transesterification of castor oil for biodiesel production: process optimization and characterization. Microchem J. 2019;145:1162–1168. doi: 10.1016/j.microc.2018.12.039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.