195
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Modelling and simulation of fast pyrolysis of pomace from three-phase olive mill targeting optimal yields of pyrolysis products

ORCID Icon, &
Pages 349-361 | Received 20 May 2023, Accepted 17 Aug 2023, Published online: 30 Aug 2023

References

  • IEA. World Energy Outlook 2000. Paris: International Energy Agency; 2000. Available from: https://www.iea.org/reports/world-energy-outlook-2000
  • Communication from the Commission, & Communication from the Commission. Energy for the future: renewable sources of energy-White Paper for a Community strategy and action plan 1997, COM (97)599. Available from: http://aei.pitt.edu/id/eprint/1130.
  • Abdeljaoued E, Brulé M, Tayibi S, et al. Bibliometric analysis of the evolution of biochar research trends and scientific production. Clean Technol Environ Policy. 2020;22(10):1967–1997. doi: 10.1007/s10098-020-01969-x.
  • Neifar M, Jaouani A, Ayari A, et al. Improving the nutritive value of olive cake by solid state cultivation of the medicinal mushroom fomes fomentarius. Chemosphere. 2013;91(1):110–114. doi: 10.1016/j.chemosphere.2012.12.015.
  • Cruz S, Yousfi K, Oliva J, et al. Heat treatment improves olive oil extraction. J Am Oil Chem Soc. 2007;84(11):1063–1068. doi: 10.1007/s11746-007-1145-2.
  • Romaniello R, Leone A, Tamborrino A. Specification of a newde-stoner machine: evaluation of machining effects on olivepaste’s rheology and olive oil yield and quality. J Sci Food Agric. 2017;97(1):115–121. doi: 10.1002/jsfa.7694.
  • Alburquerque JA, Gonzálvez J, Garcıa D, et al. Agrochemical characterisation of “alperujo”, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour Technol. 2004;91(2):195–200. doi: 10.1016/S0960-8524(03)00177-9.
  • Roig A, Cayuela ML, Sanchez Monedero MA. An overview on olive mill wastes and their valorisation methods. Waste Manag. 2006;26(9):960–969. doi: 10.1016/j.wasman.2005.07.024.
  • Montemurro F, Convertini G, Ferri D. Mill wastewater and olive pomace compost as amendments for rye-grass. Agron J. 2004;24(8):481–486. doi: 10.1051/agro:2004044.
  • International Olive Oil. The world of olive oil; 2022. Available from: https://www.internationaloliveoil.org/the-world-ofoliveoil/?lang=fr.
  • Azbar N, Bayram A, Filibeli A, et al. A review of waste management options in olive oil production. Crit Rev Environ Sci Technol. 2004;34(3):209–247. doi: 10.1080/10643380490279932.
  • Tsagaraki E, Lazarides HN, Petrotos KB. Olive mill wastewater treatment. In: Oreopoulou V, Russ W, editors. Utilization of by-products and treatment of waste in the food industry. Boston (MA): Springer; 2007. p. 133–157. doi: 10.1007/978-0-387-35766-9_8.
  • Ferhat R, Laroui S, Zitouni B, et al. Experimental study of solid waste olive’s mill: extraction modes optimization and physicochemical characterization. J Nat Prod Plant Resour. 2014;4:16–23.
  • Dorad F, la Sanchez P, Alcazar Ruiz A, et al. Fast pyrolysis as an alternative to the valorization of olive mill wastes. J Sci Food Agric. 2021;101(7):2650–2658. doi: 10.1002/jsfa.10856.
  • Fathy SA, Mahmoud AE, Rashad MM, et al. Improving the nutritive value of olive pomace by solid state fermentation of Kluyveromyces marxianus with simultaneous production of gallic acid. Int J Recycl Org Waste Agric. 2018;7(2):135–141. doi: 10.1007/s40093-018-0199-5.
  • Vlyssides AG, Iaconidou K. Olive oil production in Greece. In: EU IMPEL Olive Oil Workshop, Cordoba, Spain; 2003.
  • Pagnanelli F, Viggi CC, Toro L. Development of new composite biosorbents from olive pomace wastes. Appl Surf Sci. 2010;256(17):5492–5497. doi: 10.1016/j.apsusc.2009.12.146.
  • Volpe M, D'Anna C, Messineo S, et al. A. Messineo, sustainable production of biocombustibles from pyrolysis of agro-industrial wastes. Sustainability. 2014;6(11):7866–7882. doi: 10.3390/su6117866.
  • Michailides M, Christou G, Akratos CS, et al. Composting of olive leaves and pomace from a three-phase olive mill plant. Int Biodeterior Biodegradation. 2011;65(3):560–564. doi: 10.1016/j.ibiod.2011.02.007.
  • Mennane Z, Tada S, Aki I, et al. Caractérisation physico-chimique etmicrobiologique des grignons d ’ olive de 26 huileries traditionnelles de la région de Beni Mellal (Maroc). Desalination. 2010;5(19):4–9.
  • Bhanu DRC, Sabu KK. Fatty acid composition of the fruits of syzygium zeylanicum (L.) DC. VAR. Zeylanicum. Int J Curr Pharm. 2017;9(5):155–157. doi: 10.22159/ijcpr.2017v9i5.22161.
  • Göğüş F, Maskan M. Air drying characteristics of solid waste (pomace) of olive oil processing. J Food Eng. 2006;72(4):378–382. doi: 10.1016/j.jfoodeng.2004.12.018.
  • Haagensen F, Skiadas IV, Gavala HN, et al. Pre-treatment and ethanol fermentation potential of olive pulp at different dry matter concentrations. Biomass Bioenergy. 2009;33(11):1643–1651. doi: 10.1016/j.biombioe.2009.08.006.
  • Fernandes MC, Torrado I, Carvalheiro F, et al. Duarte bioethanol production from extracted olive pomace: dilute acidhydrolysis. Bioethanol. 2016;2(1):103–111. doi: 10.1515/bioeth-2016-0007.
  • Che F, Sarantopoulos I, Tsoutsos T, et al. Exploring a promising feedstock for biodiesel production in mediterraneancountries: a study on free fatty acid esterification of olive pomace oil. Biomass Bioenergy. 2012;36:427–431. doi: 10.1016/j.biombioe.2011.10.005.
  • Rajaeifar MA, Akram A, Ghobadian B, et al. Environmental impact assessment of olive pomace oil biodiesel production and consumption: a comparative lifecycle assessment. Energy J. 2016;106:87–102. doi: 10.1016/j.energy.2016.03.010.
  • Sert M, Gökkaya DS, Cengiz N, et al. Hydrogen production from olive-pomace by catalytic hydrothermal gasification. J Taiwan Inst Chem Eng. 2018;83:90–98. doi: 10.1016/j.jtice.2017.11.026.
  • Serrano A, Fermoso FG, Alonso-Fariñas B, et al. Performance evaluation of mesophilic semi-continuous anaerobic digestion of hightemperature thermally pre-treated olive mill solid waste. J Waste Manag. 2019;87:250–257. doi: 10.1016/j.wasman.2019.02.003.
  • Borja R, Rincón R, De la Lama D. Performance evaluation and substrate removalkinetics in the semi-continuous anaerobic digestion of thermally pretreated two-phase olivepomace or “alperujo. Process Saf Environ Prot. 2017;105:288–296. doi: 10.1016/j.psep.2016.11.014.
  • Gomes FP, Silva NH, Trovatti E, et al. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy. 2013;55:205–211. doi: 10.1016/j.biombioe.2013.02.004.
  • Leite P, Salgado JM, Venâncio A, et al. Ultrasounds pretreatment of olive pomace to improve xylanase and cellulaseproduction by solid-state fermentation. Bioresour Technol. 2016;214:737–746. doi: 10.1016/j.biortech.2016.05.028.
  • Arvanitoyannis IS, Kassaveti A. Current and potential uses of composted olive oil waste. Int J Food Sci Tech. 2007;42(3):281–295. doi: 10.1111/j.1365-2621.2006.01211.x.
  • Petrov N, Budinova T, Razvigorova M, et al. Conversion of olive wastes to volatiles and carbon adsorbents. Biomass Bioenergy. 2008;32(12):1303–1310. doi: 10.1016/j.biombioe.2008.03.009.
  • Pagnanelli F, Mainelli S, Vegliò F, et al. Heavy metal removal by olive pomace: biosorbent characterisation and equilibrium modelling. Chem Eng Sci. 2003;58(20):4709–4717. doi: 10.1016/j.ces.2003.08.001.
  • Lammi S, Barakat A, Mayer-Laigle C, et al. Dry fractionation of olive pomace as a sustainable process to produce fillers for biocomposites. Powder Technol. 2018;326:44–53. doi: 10.1016/j.powtec.2017.11.060.
  • Kaya N, Atagur M, Akyuz O, et al. Fabrication and characterization of olive pomace filled PP. Compos B: Eng. 2018;150:277–283. doi: 10.1016/j.compositesb.2017.08.017.
  • Troger N, Richter N, Ralph S. Effect of feedstock composition on product yields and energy recovery rates of fast pyrolysis products from different straw types. J Anal Appl Pyrolysis. 2013;100:158–165. doi: 10.1016/j.jaap.2012.12.012.
  • Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94. doi: 10.1016/j.biombioe.2011.01.048.
  • McKendry P. Energy production from biomass: (part 2): conversion technologies. Bioresour Technol. 2002;83(1):47–54. doi: 10.1016/S0960-8524(01)00119-5.
  • Bridgwate AV, Meier D, Radlein D. An overview of fast pyrolysis of biomass. Org Geochem. 1999;30(12):1479–1493. doi: 10.1016/S0146-6380(99)00120-5.
  • Vispute TP, Zhang H, Sanna A, et al. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science. 2010;330(6008):1222–1227. doi: 10.1126/science.1194218.
  • Mutlu Ü. Pyrolysis of different biomass samples and characterisation of the products [master of science thesis]. Eskişehir: Anadolu University; 2012.
  • Qureshi KM, Lup AK, Khan S, et al. A technical review on semi-continuous and continuous pyrolysis process of biomass to bio-oil. J Anal Appl Pyrolysis. 2018;131:52–75. doi: 10.1016/j.jaap.2018.02.010.
  • Mamleev V, Bourbigot S, Le Bras M, et al. The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis:interdependence of the steps. J Anal Appl Pyrolysis. 2009;84(1):1–17. doi: 10.1016/j.jaap.2008.10.014.
  • Chen X, Zhang H, Song Y, et al. Prediction of product distribution and bio-oil heating value of biomass fast pyrolysis. Chem Eng Process: Process Intensif. 2018;130:36–42. doi: 10.1016/j.cep.2018.05.018.
  • Kostas ET, Jiménez DG, Shepherd BJ, et al. Microwavepyrolysis of olive pomace for bio-oil and bio-char production. Chem Eng. 2020;387:123404. doi: 10.1016/j.cej.2019.123404.
  • Ghouma I, Jeguirim M, Guizani C, et al. Pyrolysis of olive pomace: degradation kinetics, gaseous analysis and char characterization. Waste Biomass Valor. 2017;8(5):1689–1697. doi: 10.1007/s12649-017-9919-8.
  • Mabrouki J, Abbassi MA, Guedri K, et al. Simulation of biofuel production via fast pyrolysis of palm oil residues. J Fuels. 2015;159:819–827. doi: 10.1016/j.fuel.2015.07.043.
  • Mabrouki J, Guedri K, Abbassi MA, et al. Simulation of the fast pyrolysis of tunisian biomass feedstocks for bio-fuel production. Comptes Rendus Chim. 2016;19(4):466–474. doi: 10.1016/j.crci.2015.09.020.
  • Bakari R, Kivevele T, Huang X, et al. Simulation and optimisation of the pyrolysis of ricehusk: Preliminary assessment for gasification applications. J Anal Appl Pyrolysis. 2020;150:104891. doi: 10.1016/j.jaap.2020.104891.
  • Luo Z, Wang S, Cen K. A model of wood flash pyrolysis in fluidized bed reactor. Renew Energy. 2005;30(3):377–392. doi: 10.1016/j.renene.2004.03.019.
  • Jauhiainen J, Conesa JA, Font R, et al. Kinetics of the pyrolysis and combustion of olive oil solid waste. J Anal Appl Pyrolysis. 2004;72(1):9–15. doi: 10.1016/j.jaap.2004.01.003.
  • Zabaniotou A, Damartzis T. Modelling the intra-particle transport phenomena and chemical reactions of olive kernel fast pyrolysis. J Anal Appl Pyrolysis. 2007;80(1):187–194. doi: 10.1016/j.jaap.2007.02.004.
  • Khan MSA, Grioui N, Halouani K, et al. Aspen plus modelling simulation and techno-economic study of catalytic and non-catalytic fast pyrolysis of olive mill wastewater sludge in a fluidized bed reactor. Int J Energy Environ Econ. 2019;27(3):155–186.
  • Khan MSA. Modeling of a pilot installation for the recovery of residual sludge from olive oil extraction, for the production of biofuel by catalytic pyrolysis, integrating a sorption machine driven by solar energy and/or waste heat recovered from pyrolysis gas [doctoral dissertation]. Lorraine: Université de Lorraine; 2022.
  • Khan MSA, Benelmir R, Donnot A. Thermodynamic analysis of pyrolysis of olive mill waste water sludge in fluidized bed reactor. In: 5th International Conference on Renewable Energies for Developing Countries (REDEC), IEEE; 2020. doi: 10.1109/REDEC49234.2020.9163830.
  • Asimakidou T, Chrissafis K. Thermal behavior and pyrolysis kinetics of olive stone residue. J Therm Anal Calorim. 2021–10. doi: 10.1007/s10973-021-11163-w.
  • Onarheim K, Solantausta Y, Lehto J. Process simulation development of fast pyrolysis of wood using aspen plus. Energy Fuels. 2015;29(1):205–217. doi: 10.1021/ef502023y.
  • Liu R, Liu G, Yousaf B, et al. Novel investigation of pyrolysis mechanisms and kinetics for functional groups in biomass matrix. Renew Sustain Energy Rev. 2022;153:111761. doi: 10.1016/j.rser.2021.111761.
  • Zhong D, Zeng K, Li J, et al. Characteristics and evolution of heavy components in bio-oilfrom the pyrolysis of cellulose, hemicellulose and lignin. Renew Sustain Energy Rev. 2022;157:111989. doi: 10.1016/j.rser.2021.111989.
  • Grønli MG, Melaaen MC. Mathematical model for wood pyrolysis - comparison of experimental measurements with model predictions. Energy Fuels. 2000;14(4):791–800. doi: 10.1021/ef990176q.
  • Yu X, Hassan M, Ocone R, et al. A CFD study of biomass pyrolysis in a downer reactor equipped with a novel gas-solid separator-II thermochemical performance and products. Fuel Process Technol. 2015;133:51–63. doi: 10.1016/j.fuproc.2015.01.002.
  • Boateng AA, Mtui PL. CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor. Appl Therm Eng. 2012;33-34(34):190–198. doi: 10.1016/j.applthermaleng.2011.09.034.
  • Soria J, Zeng K, Asensio D, et al. Comprehensive CFD modelling of solar fast pyrolysis of beech wood pellets, fuel. Process Technol. 2017;158:226–237. doi: 10.1016/j.fuproc.2017.01.006.
  • Qureshi N, Saha BC, Cotta MA, et al. An economic evaluation of biological conversion of wheat straw to butanol: a biofuel, energy. Convers Manag. 2013;65:456–462. 10.1016/j.enconman.2012.09.015
  • Kwiatkowski JR, McAloon AJ, Taylor F, et al. Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Ind Crops Prod. 2006;23(3):288–296. doi: 10.1016/j.indcrop.2005.08.004.
  • Giwa A, Yusuf A, Ajumobi O, et al. Pyrolysis of date palm waste to biochar using concentrated solar thermal energy: Economic and sustainability implications. Waste Manag. 2019;93:14–22. doi: 10.1016/j.wasman.2019.05.022.
  • Varhegyi G, Antal MJ, Jakab E, et al. Kinetic modeling of biomass pyrolysis. J Anal Appl Pyrolysis. 1997;42(1):73–87. doi: 10.1016/S0165-2370(96)00971-0.
  • Orfao JJM, Antunes FJA, Figueiredo JL. Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel. 1999;78(3):349–358. doi: 10.1016/S0016-2361(98)00156-2.
  • Thomsen T, Hauggaard-Nielsen H, Bruun E, Ahrenfeldt J. The potential of pyrolysis technology in climate change mitigation–influence of process design and–parameters, simulated in SuperPro designer software. Technical University of Denmark; 2011.
  • Diebold JP. A unified, global model for the pyrolysis of cellulose. Biomass Bioenergy. 1994;7(1–6):75–85. doi: 10.1016/0961-9534(94)00039-V.
  • Miller RS, Bellan J. A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and liqnin kinetics. Combust Sci Technol. 1997;126(1–6):97–137. doi: 10.1080/00102209708935670.
  • Vlyssides AG, Loizides M, Karlis PK. Integrated strategic approach for reusing olive oil extraction by-products. J Clean Prod. 2004;12(6):603–611. doi: 10.1016/S0959-6526(03)00078-7.
  • Xinyun W, Xinjun W, Mingqiang C, et al. Kinetic model of biomass pyrolysis based on threecomponent independent parallel first-order reactions. C J Process Eng. 2012;12(6):1020–1024.
  • Ranzi E, Cuoci A, Faravelli T, et al. Chemical kinetics of biomass pyrolysis. Energy Fuels. 2008;22(6):4292–4300. doi: 10.1021/ef800551t.
  • Wang G, Li A. Thermal decomposition and kinetics of mixtures of polylactic acid and biomass during copyrolysis. Chin J Chem Eng. 2008;16(6):929–933. doi: 10.1016/S1004-9541(09)60018-5.
  • Hornung A. Intermediate pyrolysis of biomass. In: Biomass combustion science, technology and engineering. Martin Woodhead Sawston, Cambridge: Woodhead Publishing; 2013. p. 172–186. doi: 10.1533/9780857097439.2.172.
  • Dinc G, Yel E. Self-catalyzing pyrolysis of olive pomace. J Anal Appl Pyrolysis. 2018;134:641–646. doi: 10.1016/j.jaap.2018.08.018.
  • Zabaniotou AA, Kalogiannis G, Kappas E, et al. Olive residues (cuttings and kernels) rapid pyrolysis product yields and kinetics. Biomass Bioenergy. 2000;18(5):411–420. doi: 10.1016/S0961-9534(00)00002-7.
  • Gharbi A, Hassen RB, Boufi S. Composite materials from unsaturated polyester resin and olive nuts residue: the effect of silane treatment. Ind Crops Prod. 2014;62:491–498. doi: 10.1016/j.indcrop.2014.09.012.
  • Hosoya T, Kawamoto H, Saka S. Cellulose–hemicellulose and cellulose–lignin interactions in wood pyrolysis at gasification temperature. J Anal Appl Pyrolysis. 2007;80(1):118–125. doi: 10.1016/j.jaap.2007.01.006.
  • Lajili M, Guizani C, Sanz FE, et al. Fast pyrolysis and steam gasification of pellets prepared from olive oil mill residues. Energy. 2018;150:61–68. doi: 10.1016/j.energy.2018.02.135.
  • Acıkgoz C, Onay O, Kockar OM. Fast pyrolysis of linseed: product yields and compositions. J Anal Appl Pyrolysis. 2004;71(2):417–429. doi: 10.1016/S0165-2370(03)00124-4.
  • Bok JP, Choi HS, Choi YS, et al. Fast pyrolysis of coffee grounds: characteristics of product yields and biocrude oil quality. Energy J. 2012;47(1):17–24. doi: 10.1016/j.energy.2012.06.003.
  • Bedmutha R, Booker CJ, Ferrante L, et al. Insecticidal and bactericidal characteristics of the bio-oil from the fast pyrolysis of coffee grounds. J Anal Appl Pyrolysis. 2011;90(2):224–231. doi: 10.1016/j.jaap.2010.12.011.
  • Kelkar S, Saffron CM, Chai L, et al. Pyrolysis of spent coffee grounds using a screw-conveyor reactor. Fuel Process Technol. 2015;137:170–178. doi: 10.1016/j.fuproc.2015.04.006.
  • Piskorz J, Majerski P, Radlein D, et al. Fast pyrolysis of sweet sorghum and sweet sorghum bagasse. J Anal Appl Pyrolysis. 1998;46(1):15–29. doi: 10.1016/S01652370(98)00067-9.
  • Perez MG, Wang XS, Shen J, et al. Fast pyrolysis of oil mallee woody biomass: effect of temperature on the yield and quality of pyrolysis products. Ind Eng Chem Res. 2008;47(6):1846–1854. doi: 10.1021/ie071497p.
  • Bridgwater AV. Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrolysis. 1999;51(1–2):3–22. doi: 10.1016/S0165-2370(99)00005-4.
  • Ogunsina B, Ojolo S, Ohunakin O, et al. Potentials for generating alternative fuels from empty palm fruit bunches by pyrolysis. Proc ICCEM. 2012;1:185–190.
  • Papadikis K, Gu S, Bridgwater AV. CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B: heat, momentum and mass transport in bubbling fluidised beds. Chem Eng Sci. 2009;64(5):1036–1045. doi: 10.1016/j.ces.2008.11.007.
  • Abdullah N, Gerhauser H, Bridgwater A. Bio-oil from fast pyrolysis of oil palm empty fruit bunches. J. Phys. Sci. 2007;1(1):57–74.
  • Petrides DP, Sapidou E, Calandranis J. Computer-aided process analysis and economic evaluation for biosynthetic human insulin production – a case study. Biotechnol Bioeng. 1995;48(5):529–541. doi: 10.1002/bit.260480516.
  • Qureshi N, Saha BC, Cotta M, et al. An economic evaluation of biological conversion of wheat straw to butanol: a biofuel. Energy Convers. Manag. 2013;65:456–462. doi: 10.1016/j.enconman.2012.09.015.
  • Teghammar A, Forgács G, Horváth I, et al. Technoeconomic study of NMMO pretreatment and biogas production from Forest residues. Appl Energy. 2014;116:125–133. doi: 10.1016/j.apenergy.2013.11.053.
  • Ward J, Rasul M, Bhuiya M. Energy recovery from biomass by fast pyrolysis, 10th International Conf Mech Eng, ICME, Proc Eng. Procedia Eng. 2014;90:669–674. doi: 10.1016/j.proeng.2014.11.791.
  • Smets K, Roukaerts A, Czech J, et al. Slow catalytic pyrolysis of rapeseed cake: product yield and characterization of the pyrolysis liquid. Biomass Bioenergy. 2013;57:180–190. doi: 10.1016/j.biombioe.2013.07.001.
  • Aho A, Kumar N, Eränen K, et al. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure. Fuel. 2008;87(12):2493–2501. doi: 10.1016/j.fuel.2008.02.015.
  • Christoforou E, Fokaides P, Banks S, et al. Comparative study on catalytic and non-catalytic pyrolysis of olive mill solid wastes. Waste Biomass Valor. 2018;9(2):301–313. doi: 10.1007/s12649-016-9809-5.
  • Aissaoui MH, Trabelsi ABH, Abidi S, et al. Sustainable biofuels and biochar production from olive mill wastes via co-pyrolysis process. Biomass Conv Bioref. 2023;13(10):8877–8890. doi: 10.1007/s13399-021-01735-z.
  • Mettler MS, Vlachos DG, Dauenhauer PJ. Top ten fundamental challenges of biomass pyrolysis for biofuels. Energy Environ Sci. 2012;5(7):7797–7809. doi: 10.1039/c2ee21679e.
  • Bridgwater AV, Diebold S, Meier J, et al. Fast pyrolysis of biomass: a handbook. Newbury: CPL Press; 1999.
  • Pattiya A. Bio-oil production via fast pyrolysis of biomass residues from cassava plants in a fluidisedbed reactor. Bioresour Technol. 2011;102(2):1959–1967. doi: 10.1016/j.biortech.2010.08.117.
  • Akhtar J, Amin NAS. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sustain Energy Rev. 2011;15(3):1615–1624. doi: 10.1016/j.rser.2010.11.054.
  • Vieira FR, Romero Luna CM, Glaf A, et al. Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass Bioenergy. 2020;132:105412. doi: 10.1016/j.biombioe.2019.105412.
  • Boot-Handford ME, Virmond E, Florin NH, et al. Simple pyrolysis experiments for the preliminary assessment of biomass feedstocks and low-cost tar cracking catalysts for downdraft gasification applications. Biomass Bioenergy. 2018;108:398–414. doi: 10.1016/j.biombioe.2017.10.048.
  • Fahmi R, Bridgwater A, Donnison I, et al. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel. 2008;87(7):1230–1240. doi: 10.1016/j.fuel.2007.07.026.
  • Milosavljevic I, Oja V, Suuberg OM. Thermal effects in cellulose pyrolysis: relationship to char formation processes. Ind Eng Chem Res. 1996;35(3):653–662. doi: 10.1021/ie950438l.
  • Mok WSL, Antal JM, Szabó P, et al. Formation of charcoal from biomass in a sealed reactor. Ind Eng Chem Res. 1992;31(4):1162–1166. doi: 10.1021/ie00004a027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.