76
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Functionalized iron oxide nanoparticles for covalent immobilization of cellic CTec2 cellulase: enabling enzyme reusability in cellulosic biomass conversion

, , , , &
Pages 363-373 | Received 03 May 2023, Accepted 17 Aug 2023, Published online: 08 Sep 2023

References

  • Rashid SS, Mustafa AH, Ab Rahim MH, et al. Magnetic nickel nanostructure as cellulase immobilization surface for the hydrolysis of lignocellulosic biomass. Int J Biol Macromol. 2022;209(Pt A):1048–1053. doi: 10.1016/j.ijbiomac.2022.04.072.
  • Song Q, Mao Y, Wilkins M, et al. Cellulase immobilization on superparamagnetic nanoparticles for reuse in cellulosic biomass conversion. AIMS Bioeng. 2016;3(3):264–276. doi: 10.3934/bioeng.2016.3.264.
  • Madadi M, Tu Y, Abbas A. Recent status on enzymatic saccharification of lignocellulosic biomass for bioethanol production. Electron J Biol. 2017;13(2):135–143.
  • Pino MS, Rodríguez-Jasso RM, Michelin M, et al. Enhancement and modeling of enzymatic hydrolysis on cellulose from agave bagasse hydrothermally pretreated in a horizontal bioreactor. Carbohydr Polym. 2019;211:349–359. doi: 10.1016/j.carbpol.2019.01.111.
  • Periyasamy K, Santhalembi L, Mortha G, et al. Bioconversion of lignocellulosic biomass to fermentable sugars by immobilized magnetic cellulolytic enzyme cocktails. Langmuir. 2018;34(22):6546–6555. doi: 10.1021/acs.langmuir.8b00976.
  • Osman AI, Elgarahy AM, Eltaweil AS, et al. Biofuel production, hydrogen production and water remediation by photocatalysis, biocatalysis, and electrocatalysis. Environ Chem Lett. 2023;21(3):1315–1379. doi: 10.1007/s10311-023-01581-7.
  • Zanuso E, Gomes DG, Ruiz HA, et al. Enzyme immobilization as a strategy towards efficient and sustainable lignocellulosic biomass conversion into chemicals and biofuels: current status and perspectives. Sustainable Energy Fuels. 2021;5(17):4233–4247. doi: 10.1039/D1SE00747E.
  • Kaur P, Taggar MS, Kalia A. Characterization of magnetic nanoparticle–immobilized cellulases for enzymatic saccharification of rice straw. Biomass Conv Bioref. 2021;11(3):955–969. doi: 10.1007/s13399-020-00628-x.
  • Singhvi M, Kim BS. Current developments in lignocellulosic biomass conversion into biofuels using nanobiotechology approach. Energies. 2020;13(20):5300. doi: 10.3390/en13205300.
  • Abraham RE, Puri M. Nano-immobilized cellulases for biomass processing with application in biofuel production. In Methods in enzymology. Vol. 630. Connecticut: Academic Press; 2020. p. 327–346.
  • Sadeghi M, Moghimifar Z, Javadian H. Fe3O4@ SiO2 nanocomposite immobilized with cellulase enzyme: stability determination and biological activity. Chem Phys Lett. 2023;811:140161. doi: 10.1016/j.cplett.2022.140161.
  • Zhang Q, Kang J, Yang B, et al. Immobilized cellulase on Fe3O4 nanoparticles as a magnetically recoverable biocatalyst for the decomposition of corncob. Chin J Catal. 2016;37(3):389–397. doi: 10.1016/S1872-2067(15)61028-2.
  • Kumar A, Singh S, Nain L. Magnetic nanoparticle immobilized cellulase enzyme for saccharification of paddy straw. Int J Curr Microbiol App Sci. 2018;7(04):881–893. doi: 10.20546/ijcmas.2018.704.095.
  • Paz-Cedeno FR, Carceller JM, Iborra S, et al. Magnetic graphene oxide as a platform for the immobilization of cellulases and xylanases: ultrastructural characterization and assessment of lignocellulosic biomass hydrolysis. Renew Energy. 2021;164:491–501. doi: 10.1016/j.renene.2020.09.059.
  • Ghose TK. Measurement of cellulase activities. Pure Appl Chem. 1987;59(2):257–268. doi: 10.1351/pac198759020257.
  • Bailey MJ, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 1992;23(3):257–270. doi: 10.1016/0168-1656(92)90074-J.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265–275. doi: 10.1016/S0021-9258(19)52451-6.
  • Yu D, Ma X, Huang Y, et al. Immobilization of cellulase on magnetic nanoparticles for rice bran oil extraction in a magnetic fluidized bed. Int. J. of Food Engg. 2022;18(1):15–26. doi: 10.1515/ijfe-2021-0111.
  • Siva D, Srivethi G, Vasan PT, et al. Enhanced cellulase enzyme production by Aspergillus Niger using cellulase/iron oxide magnetic nano-composites. J King Saud Univ-Sci. 2022;34(1):101695. doi: 10.1016/j.jksus.2021.101695.
  • Selvam K, Govarthanan M, Senbagam D, et al. Activity and stability of bacterial cellulase immobilized on magnetic nanoparticles. Chin J Catal. 2016;37(11):1891–1898. doi: 10.1016/S1872-2067(16)62487-7.
  • Huang YY, Zhan P, Wang F, et al. Cellulase immobilized onto amino-functionalized magnetic Fe3O4@SiO2 nanoparticle for poplar deconstruction. Chem Pap. 2022;76(9):5807–5817. doi: 10.1007/s11696-022-02292-z.
  • Gemeay AH, Keshta BE, El-Sharkawy RG, et al. Chemical insight into the adsorption of reactive wool dyes onto amine-functionalized magnetite/silica core-shell from industrial wastewaters. Environ Sci Pollut Res Int. 2020;27(26):32341–32358. doi: 10.1007/s11356-019-06530-y.
  • Osman AI, Elgarahy AM, Mehta N, et al. Facile synthesis and life cycle assessment of highly active magnetic sorbent composite derived from mixed plastic and biomass waste for water remediation. ACS Sustain Chem Eng. 2022;10(37):12433–12447. doi: 10.1021/acssuschemeng.2c04095.
  • Tabasi H, Mosavian MTH, Darroudi M, et al. Synthesis and characterization of amine-functionalized Fe3O4/Mesoporous Silica Nanoparticles (MSNs) as potential nanocarriers in drug delivery systems. J Porous Mater. 2022;29(6):1817–1828. doi: 10.1007/s10934-022-01259-5.
  • Alftrén J, Hobley TJ. Immobilization of cellulase mixtures on magnetic particles for hydrolysis of lignocellulose and ease of recycling. Biomass Bioenergy. 2014;65:72–78. doi: 10.1016/j.biombioe.2014.03.009.
  • Kumar A, Singh S, Tiwari R, et al. Immobilization of indigenous holocellulase on iron oxide (Fe2O3) nanoparticles enhanced hydrolysis of alkali pretreated paddy straw. Int J Biol Macromol. 2017;96:538–549. doi: 10.1016/j.ijbiomac.2016.11.109.
  • Abraham RE, Verma ML, Barrow CJ, et al. Suitability of magnetic nanoparticle immobilized cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels. 2014;7(1):90. doi: 10.1186/1754-6834-7-90.
  • Jia J, Zhang W, Yang Z, et al. Novel magnetic cross-linked cellulase aggregates with a potential application in lignocellulosic biomass bioconversion. Molecules. 2017;22(2):269. doi: 10.3390/molecules22020269.
  • Mariño MA, Moretti P, Tasic L. Immobilized commercial cellulases onto amino-functionalized magnetic beads for biomass hydrolysis: enhanced stability by non-polar silanization. Biomass Conv Bioref. 2023;13(10):9265–9275. doi: 10.1007/s13399-021-01798-y.
  • Gao J, Lu CL, Wang Y, et al. Rapid immobilization of cellulase onto graphene oxide with a hydrophobic spacer. Catalysts. 2018;8(5):180. doi: 10.3390/catal8050180.
  • Sillu D, Agnihotri S. Cellulase immobilization onto magnetic halloysite nanotubes: enhanced enzyme activity and stability with high cellulose saccharification. ACS Sustainable Chem Eng. 2020;8(2):900–913. doi: 10.1021/acssuschemeng.9b05400.
  • Mustafa AH, Rashid SS, Rahima MHA, Sikder MBH, Sasi AA. 2022. Cellulase immobilized on silica coated magnetic nanoparticles for improved stability and reusability. In AIP conference proceedings. Vol. 2610, No. 1. Melville, NY: AIP Publishing.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.