165
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Exploring the present and future of biomass recovery units: technological innovation, policy incentives and economic challenges

ORCID Icon
Pages 375-387 | Received 24 Apr 2023, Accepted 18 Aug 2023, Published online: 05 Sep 2023

References

  • Nguyen XP, Le ND, Pham VV, et al. Mission, challenges, and prospects of renewable energy development in Vietnam. Energy Sources Part A. 2021:1–13. doi: 10.1080/15567036.2021.1965264.
  • Chandel AK, Forte MB, Gonçalves IS, et al. Brazilian biorefineries from second generation biomass: critical insights from industry and future perspectives. Biofuels, Bioprod Bioref. 2021;15(4):1190–1208. doi: 10.1002/bbb.2234.
  • Ghosh S, Yadav S, Devi A, et al. Techno-economic understanding of indian energy-storage market: a perspective on green materials-based supercapacitor technologies. Renew Sustain Energy Rev. 2022;161:112412. doi: 10.1016/j.rser.2022.112412.
  • Song D, Jia B, Jiao H. Review of renewable energy subsidy system in China. Energies. 2022;15(19):7429. doi: 10.3390/en15197429.
  • Yu S, Lu T, Hu X, et al. Determinants of overcapacity in china’s renewable energy industry: evidence from wind, photovoltaic, and biomass energy enterprises. Energy Econ. 2021;97:105056. doi: 10.1016/j.eneco.2020.105056.
  • Tian J, Yu L, Xue R, et al. Global low-carbon energy transition in the post-COVID-19 era. Appl Energy. 2022;307:118205. doi: 10.1016/j.apenergy.2021.118205.
  • Junginger HM, Mai‐Moulin T, Daioglou V, et al. The future of biomass and bioenergy deployment and trade: a synthesis of 15 years IEA bioenergy task 40 on sustainable bioenergy trade. Biofuels, Bioprod Bioref. 2019;13(2):247–266. doi: 10.1002/bbb.1993.
  • Li J, Zhang Y, Yang Y, et al. Life cycle assessment and techno-economic analysis of ethanol production via coal and its competitors: a comparative study. Appl Energy. 2022;312:118791. doi: 10.1016/j.apenergy.2022.118791.
  • Vertes AA, Yochanan SSB. Financing strategies for industrial-scale biofuel production and technology development start-ups. Biomass to biofuels: strategies for global industries. Chichester: Wiley; 2010. pp. 523–545.
  • Marks-Bielska R, Bielski S, Pik K, et al. The importance of renewable energy sources in poland’s energy mix. Energies. 2020;13(18):4624. doi: 10.3390/en13184624.
  • Geng W, Venditti RA, Pawlak JJ, et al. Techno‐economic analysis of hemicellulose extraction from different types of lignocellulosic feedstocks and strategies for cost optimization. Biofuels, Bioprod Bioref. 2020;14(2):225–241. doi: 10.1002/bbb.2054.
  • Phitsuwan P, Sakka K, Ratanakhanokchai K. Improvement of lignocellulosic biomass in planta: a review of feedstocks, biomass recalcitrance, and strategic manipulation of ideal plants designed for ethanol production and processability. Biomass Bioenergy. 2013;58:390–405. doi: 10.1016/j.biombioe.2013.08.027.
  • Naik SN, Goud VV, Rout PK, et al. Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev. 2010;14(2):578–597. doi: 10.1016/j.rser.2009.10.003.
  • Singhvi MS, Gokhale DV. Lignocellulosic biomass: hurdles and challenges in its valorization. Appl Microbiol Biotechnol. 2019;103(23-24):9305–9320. doi: 10.1007/s00253-019-10212-7.
  • Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci. 2012;38(4):449–467. doi: 10.1016/j.pecs.2012.03.002.
  • Griffin DW, Schultz MA. Fuel and chemical products from biomass syngas: a comparison of gas fermentation to thermochemical conversion routes. Environ Prog Sustainable Energy. 2012;31(2):219–224. doi: 10.1002/ep.11613.
  • Lee XJ, Ong HC, Gan YY, et al. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers Manage. 2020;210:112707. doi: 10.1016/j.enconman.2020.112707.
  • Kumar G, Dharmaraja J, Arvindnarayan S, et al. A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels. Fuel. 2019;251:352–367. doi: 10.1016/j.fuel.2019.04.049.
  • Awasthi MK, Sar T, Gowd SC, et al. A comprehensive review on thermochemical, and biochemical conversion methods of lignocellulosic biomass into valuable end product. Fuel. 2023;342:127790. doi: 10.1016/j.fuel.2023.127790.
  • Brown T, Wright M, Román-Leshkov Y, et al. Techno-economic assessment (TEA) of advanced biochemical and thermochemical biorefineries (advances in biorefineries. Sawston, United Kingdom: Elsevier; 2014. pp. 34–66.
  • Venkataraman S. The distinctive domain of entrepreneurship research (seminal ideas for the next twenty-five years of advances. Vol. 21. Bongley, United Kingdom: Emerald Publishing Limited; 2019. pp. 5–20.
  • Mostapha M, Mohamed M, Ameen M, et al. Upgrading biocrudes derived from agricultural biomass into advanced biofuels: perspective from Malaysia. Fuel. 2022;323:124300. doi: 10.1016/j.fuel.2022.124300.
  • Lai H, Chen Q. Bioprocessing of plant-derived virus-like particles of norwalk virus capsid protein under current good manufacture practice regulations. Plant Cell Rep. 2012;31(3):573–584. doi: 10.1007/s00299-011-1196-6.
  • Roos A, Graham RL, Hektor B, et al. Critical factors to bioenergy implementation. Biomass Bioenergy. 1999;17(2):113–126. doi: 10.1016/S0961-9534(99)00028-8.
  • Abdmouleh Z, Alammari RA, Gastli A. Review of policies encouraging renewable energy integration & best practices. Renew Sustain Energy Rev. 2015;45:249–262. doi: 10.1016/j.rser.2015.01.035.
  • Tiwary A, Spasova S, Williams ID. A community-scale hybrid energy system integrating biomass for localised solid waste and renewable energy solution: evaluations in UK and Bulgaria. Renew Energy. 2019;139:960–967. doi: 10.1016/j.renene.2019.02.129.
  • Marsh G. Blue sky thinking for green build. Renewable Energy Focus. 2008;9(6):4–11. doi: 10.1016/S1471-0846(08)70177-X.
  • Roll H, Streisselberger L. Germany at the forefront of energy from waste: what can the UK learn? Proc Instit Civil Engin Waste Resour Manage. 2013;166(1):3–13. doi: 10.1680/warm.12.00003.
  • Tonn B, Peretz JH. State-level benefits of energy efficiency. Energy Policy. 2007;35(7):3665–3674. doi: 10.1016/j.enpol.2007.01.009.
  • Gattie DK. The new energy economy: perspective and challenges of a downstream energy state. The Electricity Journal. 2015;28(1):58–71. doi: 10.1016/j.tej.2015.01.002.
  • Stephen JD, Mabee WE, Saddler JN. Biomass logistics as a determinant of second‐generation biofuel facility scale, location and technology selection. Biofuels, Bioprod Bioref. 2010;4(5):503–518. doi: 10.1002/bbb.239.
  • Ismayilova RM. An analysis of producing ethanol and electric power from woody residues and agricultural crops in east Texas. Texas A&M University; 2007.
  • Ullah K, Sharma VK, Dhingra S, et al. Assessing the lignocellulosic biomass resources potential in developing countries: a critical review. Renew Sustain Energy Rev. 2015;51:682–698. doi: 10.1016/j.rser.2015.06.044.
  • Lim S, Lee KT. Implementation of biofuels in malaysian transportation sector towards sustainable development: a case study of international cooperation between Malaysia and Japan. Renew Sustain Energy Rev. 2012;16(4):1790–1800. doi: 10.1016/j.rser.2012.01.010.
  • Roni MS, Chowdhury S, Mamun S, et al. Biomass co-firing technology with policies, challenges, and opportunities: a global review. Renew Sustain Energy Rev. 2017;78:1089–1101. doi: 10.1016/j.rser.2017.05.023.
  • Zhang Q, Mclellan BC, Tezuka T, et al. Economic and environmental analysis of power generation expansion in Japan considering Fukushima nuclear accident using a multi-objective optimization model. Energy. 2012;44(1):986–995. doi: 10.1016/j.energy.2012.04.051.
  • Pandyaswargo AH, Pang D, Ihara I, et al. Japan-supported biomass energy projects technology readiness and distribution in the emerging southeast asian countries: exercising the J-TRA methodology and GIS. IJESD. 2020;11(1):1–8. doi: 10.18178/ijesd.2020.11.1.1217.
  • Yasukawa K, Nishikawa N, Sasada M, et al. Country update of Japan. In: Proceedings World Geothermal Congress. 2020.
  • Zhu D, Mortazavi SM, Maleki A, et al. Analysis of the robustness of energy supply in Japan: role of renewable energy. Energy Rep. 2020;6:378–391. doi: 10.1016/j.egyr.2020.01.011.
  • Akbarian A, Andooz A, Kowsari E, et al. Challenges and opportunities of lignocellulosic biomass gasification in the path of circular bioeconomy. Bioresour Technol. 2022;362:127774. doi: 10.1016/j.biortech.2022.127774.
  • Rajak U, Dasore A, Chaurasiya PK, et al. Effects of microalgae-ethanol-methanol-diesel blends on the spray characteristics and emissions of a diesel engine. Environ Dev Sustain. 2023;25(1):1–22. doi: 10.1007/s10668-021-01998-6.
  • Tiwari C, Verma TN, Dwivedi G, et al. Energy-exergy analysis of diesel engine fueled with microalgae biodiesel-diesel blend. Appl Sci. 2023;13(3):1857. doi: 10.3390/app13031857.
  • Gupta P, Rajak U, Verma TN, et al. Impact of fuel injection pressure on the common rail direct fuel injection engine powered by microalgae, kapok oil, and soybean biodiesel blend. Ind Crops Prod. 2023;194:116332. doi: 10.1016/j.indcrop.2023.116332.
  • Nema VK, Singh A, Chaurasiya PK, et al. Combustion, performance, and emission behavior of a CI engine fueled with different biodiesels: a modelling, forecasting and experimental study. Fuel. 2023;339:126976. doi: 10.1016/j.fuel.2022.126976.
  • Mohan RK, Sarojini J, Rajak U, et al. Alternative fuel production from waste plastics and their usability in light duty diesel engine: combustion, energy, and environmental analysis. Energy. 2023;265:126140. doi: 10.1016/j.energy.2022.126140.
  • Ibarra-Gonzalez P, Rong B-G. A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes. Chin J Chem Eng. 2019;27(7):1523–1535. doi: 10.1016/j.cjche.2018.09.018.
  • Gielen D, Boshell F, Saygin D, et al. The role of renewable energy in the global energy transformation. Energy Strategy Reviews. 2019;24:38–50. doi: 10.1016/j.esr.2019.01.006.
  • Pascoli DU, Aui A, Frank J, et al. The US bioeconomy at the intersection of technology, policy, and education. Biofuels Bioprod Bioref. 2022;16(1):9–26. doi: 10.1002/bbb.2302.
  • Umar M, Farid S, Naeem MA. Time-frequency connectedness among clean-energy stocks and fossil fuel markets: comparison between financial, oil and pandemic crisis. Energy. 2022;240:122702. doi: 10.1016/j.energy.2021.122702.
  • Erans M, Sanz-Pérez ES, Hanak DP, et al. Direct air capture: process technology, techno-economic and socio-political challenges. Energy Environ Sci. 2022;15(4):1360–1405. doi: 10.1039/D1EE03523A.
  • Mungodla SG, Linganiso LZ, Mlambo S, et al. Economic and technical feasibility studies: technologies for second generation biofuels. JEDT. 2019;17(4):670–704. doi: 10.1108/JEDT-07-2018-0111.
  • Narayanan H, Luna MF, von Stosch M, et al. Bioprocessing in the digital age: the role of process models. Biotechnol J. 2020;15(1):e1900172. doi: 10.1002/biot.201900172.
  • Duque A, Álvarez C, Doménech P, et al. Advanced bioethanol production: from novel raw materials to integrated biorefineries. Processes. 2021;9(2):206. doi: 10.3390/pr9020206.
  • Panoutsou C, Germer S, Karka P, et al. Advanced biofuels to decarbonise european transport by 2030: markets, challenges, and policies that impact their successful market uptake. Energy Strat Rev. 2021;34:100633. doi: 10.1016/j.esr.2021.100633.
  • Jafri Y, Wetterlund E, Anheden M, et al. Multi-aspect evaluation of integrated Forest-based biofuel production pathways: part 2. economics, GHG emissions, technology maturity and production potentials. Energy. 2019;172:1312–1328. doi: 10.1016/j.energy.2019.02.036.
  • Di Gruttola F, Borello D. Analysis of the EU secondary biomass availability and conversion processes to produce advanced biofuels: use of existing databases for assessing a metric evaluation for the 2025 perspective. Sustainability. 2021;13(14):7882. doi: 10.3390/su13147882.
  • Hameed Z, Aslam M, Khan Z, et al. Gasification of municipal solid waste blends with biomass for energy production and resources recovery: current status, hybrid technologies and innovative prospects. Renew Sustain Energy Rev. 2021;136:110375. doi: 10.1016/j.rser.2020.110375.
  • Siwal SS, Zhang Q, Devi N, et al. Recovery processes of sustainable energy using different biomass and wastes. Renew Sustain Energy Rev. 2021;150:111483. doi: 10.1016/j.rser.2021.111483.
  • Botha M, Terblanche S, Luies R. A decision support system for business development around decentralised waste utilisation in South Africa. Cleaner Environ Syst. 2022;7:100101. doi: 10.1016/j.cesys.2022.100101.
  • Khiari B, Jeguirim M, Limousy L, et al. Biomass derived chars for energy applications. Renew Sustain Energy Rev. 2019;108:253–273. doi: 10.1016/j.rser.2019.03.057.
  • Cheng F, Small AA, Colosi LM. The levelized cost of negative CO2 emissions from thermochemical conversion of biomass coupled with carbon capture and storage. Energy Convers Manage. 2021;237:114115. doi: 10.1016/j.enconman.2021.114115.
  • Machin EB, Pedroso DT, Machin AB, et al. Biomass integrated gasification-gas turbine combined cycle (BIG/GTCC) implementation in the Brazilian sugarcane industry: economic and environmental appraisal. Renewable Energy. 2021;172:529–540. doi: 10.1016/j.renene.2021.03.074.
  • Strbac G, Pudjianto D, Aunedi M, et al. Cost-effective decarbonization in a decentralized market: the benefits of using flexible technologies and resources. IEEE Power and Energy Mag. 2019;17(2):25–36. doi: 10.1109/MPE.2018.2885390.
  • Carapellucci R, Giordano L. Regenerative gas turbines and steam injection for repowering combined cycle power plants: design and part-load performance. Energy Convers Manage. 2021;227:113519. doi: 10.1016/j.enconman.2020.113519.
  • Olugbade TO, Ojo OT. Biomass torrefaction for the production of high-grade solid biofuels: a review. Bioenerg Res. 2020;13(4):999–1015. doi: 10.1007/s12155-020-10138-3.
  • Chen W-H, Lin B-J, Lin Y-Y, et al. Progress in biomass torrefaction: principles, applications and challenges. Prog Energy Combust Sci. 2021;82:100887. doi: 10.1016/j.pecs.2020.100887.
  • Sharma HB, Sarmah AK, Dubey B. Hydrothermal carbonization of renewable waste biomass for solid biofuel production: a discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renew Sustain Energy Rev. 2020;123:109761. doi: 10.1016/j.rser.2020.109761.
  • González-García S, Bacenetti J. Exploring the production of bio-energy from wood biomass. Italian case study. Sci Total Environ. 2019;647:158–168. doi: 10.1016/j.scitotenv.2018.07.295.
  • Solarte-Toro JC, González-Aguirre JA, Giraldo JAP, et al. Thermochemical processing of woody biomass: a review focused on energy-driven applications and catalytic upgrading. Renew Sustain Energy Rev. 2021;136:110376. doi: 10.1016/j.rser.2020.110376.
  • Situmorang YA, Zhao Z, Yoshida A, et al. Potential power generation on a small-scale separated-type biomass gasification system. Energy. 2019;179:19–29. doi: 10.1016/j.energy.2019.04.163.
  • Elgarahy AM, Hammad A, El-Sherif DM, et al. Thermochemical conversion strategies of biomass to biofuels, techno-economic and bibliometric analysis: a conceptual review. J Environ Chem Eng. 2021;9(6):106503. doi: 10.1016/j.jece.2021.106503.
  • Pal DB, Singh A, Bhatnagar A. A review on biomass based hydrogen production technologies. Int J Hydrogen Energy. 2022;47(3):1461–1480. doi: 10.1016/j.ijhydene.2021.10.124.
  • Ullah Z, Elkadeem M, Kotb KM, et al. Multi-criteria decision-making model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply. Renew Energy. 2021;179:885–910. doi: 10.1016/j.renene.2021.07.063.
  • Brandao AS, Goncalves A, Santos JM. Circular bioeconomy strategies: from scientific research to commercially viable products. J Cleaner Prod. 2021;295:126407. doi: 10.1016/j.jclepro.2021.126407.
  • Zhao S, Alexandroff A. Current and future struggles to eliminate coal. Energy Policy. 2019;129:511–520. doi: 10.1016/j.enpol.2019.02.031.
  • Balat M, Balat M. Political, economic and environmental impacts of biomass-based hydrogen. Int J Hydrogen Energy. 2009;34(9):3589–3603. doi: 10.1016/j.ijhydene.2009.02.067.
  • Braghiroli FL, Passarini L. Valorization of biomass residues from Forest operations and wood manufacturing presents a wide range of sustainable and innovative possibilities. Curr Forestry Rep. 2020;6(2):172–183. doi: 10.1007/s40725-020-00112-9.
  • Latõšov E, Volkova A, Siirde S. The impact of subsidy mechanisms on biomass and oil shale based electricity cost prices. Oil Shale. 2011;28(1S):140. doi: 10.3176/oil.2011.1S.06.
  • Zhang Y, Eberhardt TL, Cai B, et al. Organosolv fractionation of a lignocellulosic biomass feedstock using a pilot scale microwave-heating reactor. Ind Crops Prod. 2022;180:114700. doi: 10.1016/j.indcrop.2022.114700.
  • Rodrigues AM, Costa MM, Nunes LJ. Short rotation woody coppices for biomass production: an integrated analysis of the potential as an energy alternative. Curr Sustain Renew Energy Rep. 2021;8(1):70–89. doi: 10.1007/s40518-020-00171-3.
  • Lozano-García DF, Santibañez-Aguilar JE, Lozano FJ, et al. GIS-based modeling of residual biomass availability for energy and production in Mexico. Renew Sustain Energy Rev. 2020;120:109610. doi: 10.1016/j.rser.2019.109610.
  • Mukherjee C, Denney J, Mbonimpa E, et al. A review on municipal solid waste-to-energy trends in the USA. Renew Sustain Energy Rev. 2020;119:109512. doi: 10.1016/j.rser.2019.109512.
  • Becerra-Pérez LA, Rincón L, Posada-Duque JA. Logistics and costs of agricultural residues for cellulosic ethanol production. Energies. 2022;15(12):4480. doi: 10.3390/en15124480.
  • Thengane SK, Kung KS, Gomez-Barea A, et al. Advances in biomass torrefaction: parameters, models, reactors, applications, deployment, and market. Prog Energy Combust Sci. 2022;93:101040. doi: 10.1016/j.pecs.2022.101040.
  • Baral NR, Asher ZD, Trinko D, et al. Biomass feedstock transport using fuel cell and battery electric trucks improves lifecycle metrics of biofuel sustainability and economy. J Cleaner Prod. 2021;279:123593. doi: 10.1016/j.jclepro.2020.123593.
  • Baral NR, Kavvada O, Mendez-Perez D, et al. Techno-economic analysis and life-cycle greenhouse gas mitigation cost of five routes to bio-jet fuel blendstocks. Energy Environ Sci. 2019;12(3):807–824. doi: 10.1039/C8EE03266A.
  • Douvartzides S, Charisiou ND, Wang W, et al. Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part II: catalytic research. Renewable Energy. 2022;189:315–338. doi: 10.1016/j.renene.2022.02.106.
  • Oyedeji O, Langholtz M, Hellwinckel C, et al. Supply analysis of preferential market incentive for energy crops. Biofuels, Bioprod Bioref. 2021;15(3):736–748. doi: 10.1002/bbb.2184.
  • Patel B, Patel A, Gami B, et al. Energy balance, GHG emission and economy for cultivation of high biomass verities of bamboo, sorghum and pearl millet as energy crops at marginal ecologies of Gujarat state in India. Renew Energy. 2020;148:816–823. doi: 10.1016/j.renene.2019.10.167.
  • Rani, G. M., Pathania, D., Umapathi, R., Rustagi, S., Huh, Y. S., Gupta, V. K., Kaushik, A., & Chaudhary, V. Agro-waste to sustainable energy: a green strategy of converting agricultural waste to nano-enabled energy applications.Sci Total Environ. 2023;875:162667. doi: 10.1016/j.scitotenv.2023.162667.
  • Solinas S, Tiloca MT, Deligios PA, et al. Carbon footprints and social carbon cost assessments in a perennial energy crop system: a comparison of fertilizer management practices in a mediterranean area. Agric Syst. 2021;186:102989. doi: 10.1016/j.agsy.2020.102989.
  • Suardi A, Bergonzoli S, Alfano V, et al. Economic distance to gather agricultural residues from the field to the integrated biomass logistic Centre: a spanish case-study. Energies. 2019;12(16):3086. doi: 10.3390/en12163086.
  • Thomas BS, Yang J, Mo KH, et al. Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: a comprehensive review. J Build Engin. 2021;40:102332. doi: 10.1016/j.jobe.2021.102332.
  • Jiang W, Jacobson MG, Langholtz MH. A sustainability framework for assessing studies about marginal lands for planting perennial energy crops. Biofuels, Bioprod Bioref. 2019;13(1):228–240. doi: 10.1002/bbb.1948.
  • Pires JR, Souza VG, Fernando AL. Valorization of energy crops as a source for nanocellulose production–current knowledge and future prospects. Ind Crops Prod. 2019;140:111642. doi: 10.1016/j.indcrop.2019.111642.
  • Pulighe G, Bonati G, Colangeli M, et al. Ongoing and emerging issues for sustainable bioenergy production on marginal lands in the mediterranean regions. Renew Sustain Energy Rev. 2019;103:58–70. doi: 10.1016/j.rser.2018.12.043.
  • Kohlhepp P, Harb H, Wolisz H, et al. Large-scale grid integration of residential thermal energy storages as demand-side flexibility resource: a review of international field studies. Renew Sustain Energy Rev. 2019;101:527–547. doi: 10.1016/j.rser.2018.09.045.
  • Graney R, Giesy J, Clark J. Field studies (fundamentals of aquatic toxicology. CRC Press; 2020. pp. 257–305.
  • Zahraee SM, Shiwakoti N, Stasinopoulos P. Application of geographical information system and agent-based modeling to estimate particle-gaseous pollutant emissions and transportation cost of woody biomass supply chain. Appl Energy. 2022;309:118482. doi: 10.1016/j.apenergy.2021.118482.
  • Kreutz TG, Larson ED, Elsido C, et al. Techno-economic prospects for producing Fischer-Tropsch jet fuel and electricity from lignite and woody biomass with CO2 capture for EOR. Appl Energy. 2020;279:115841. doi: 10.1016/j.apenergy.2020.115841.
  • Mac Domhnaill C, Ryan L. Towards renewable electricity in Europe: revisiting the determinants of renewable electricity in the european union. Renewable Energy. 2020;154:955–965. doi: 10.1016/j.renene.2020.03.084.
  • Skjærseth JB. Towards a european green deal: the evolution of EU climate and energy policy mixes. Int Environ Agreements. 2021;21(1):25–41. doi: 10.1007/s10784-021-09529-4.
  • Antar M, Lyu D, Nazari M, et al. Biomass for a sustainable bioeconomy: an overview of world biomass production and utilization. Renew Sustain Energy Rev. 2021;139:110691. doi: 10.1016/j.rser.2020.110691.
  • Sikkema R, Proskurina S, Banja M, et al. How can solid biomass contribute to the EU’s renewable energy targets in 2020, 2030 and what are the GHG drivers and safeguards in energy-and forestry sectors? Renewable Energy. 2021;165:758–772. doi: 10.1016/j.renene.2020.11.047.
  • Mehmood T, Hassan MA, Li X, et al. Mechanism behind sources and sinks of major anthropogenic greenhouse gases (climate change alleviation for sustainable progression. CRC Press; 2022. pp. 114–150.
  • Wei Y, Gong P, Zhang J, et al. Exploring public opinions on climate change policy in" big data era"—a case study of the european union emission trading system (EU-ETS) based on twitter. Energy Policy. 2021;158:112559. doi: 10.1016/j.enpol.2021.112559.
  • Chen Y-K, Jensen IG, Kirkerud JG, et al. Impact of fossil-free decentralized heating on Northern european renewable energy deployment and the power system. Energy. 2021;219:119576. doi: 10.1016/j.energy.2020.119576.
  • Garcia-Torea N, Giordano-Spring S, Larrinaga C, et al. Accounting for carbon emission allowances: an empirical analysis in the EU ETS phase 3. Social and Environmental Accountability Journal. 2022;42(1-2):93–115. doi: 10.1080/0969160X.2021.2012496.
  • Salimbeni A, Lombardi G, Rizzo AM, et al. Techno-Economic feasibility of integrating biomass slow pyrolysis in an EAF steelmaking site: a case study. Appl Energy. 2023;339:120991. doi: 10.1016/j.apenergy.2023.120991.
  • Dissanayake S, Mahadevan R, Asafu-Adjaye J. Evaluating the efficiency of carbon emissions policies in a large emitting developing country. Energy Policy. 2020;136:111080. doi: 10.1016/j.enpol.2019.111080.
  • Rissman J, Bataille C, Masanet E, III, et al. Technologies and policies to decarbonize global industry: review and assessment of mitigation drivers through 2070. Appl Energy. 2020;266:114848. doi: 10.1016/j.apenergy.2020.114848.
  • Nandimandalam H, Gude VG. Renewable wood residue sources as potential alternative for fossil fuel dominated electricity mix for regions in Mississippi: a techno-economic analysis. Renewable Energy. 2022;200:1105–1119. doi: 10.1016/j.renene.2022.10.010.
  • Jacobson R, Sanchez DL. Opportunities for carbon dioxide removal within the United States department of agriculture. Front Clim. 2019;1:2. doi: 10.3389/fclim.2019.00002.
  • Su Y, Zhang P, Su Y. An overview of biofuels policies and industrialization in the major biofuel producing countries. Renew Sustain Energy Rev. 2015;50:991–1003. doi: 10.1016/j.rser.2015.04.032.
  • Bartuska A. Why biomass is important: the role of the USDA Forest service in managing and using biomass for energy and other uses. Citeseer; 2006
  • Stanton BJ, Bourque A, Coleman M, et al. The practice and economics of hybrid poplar biomass production for biofuels and bioproducts in the pacific northwest. Bioenerg Res. 2021;14(2):543–560. doi: 10.1007/s12155-020-10164-1.
  • Schubert C. Can biofuels finally take center stage? Nat Biotechnol. 2006;24(7):777–784. doi: 10.1038/nbt0706-777.
  • Balan V, Chiaramonti D, Kumar S. Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels, Bioprod Bioref. 2013;7(6):732–759. doi: 10.1002/bbb.1436.
  • Suwa A, Jupesta J. Policy innovation for technology diffusion: a case-study of japanese renewable energy public support programs. Sustain Sci. 2012;7(2):185–197. doi: 10.1007/s11625-012-0175-3.
  • Haller M, Ludig S, Bauer N. Decarbonization scenarios for the EU and MENA power system: considering spatial distribution and short term dynamics of renewable generation. Energy Policy. 2012;47:282–290. doi: 10.1016/j.enpol.2012.04.069.
  • Wong KJ, Ooi JK, Woon KS, et al. A country-level pareto-optimal palm waste utilisation network for economic and environmental sustainability. Energy. 2022;260:125007. doi: 10.1016/j.energy.2022.125007.
  • Horiuchi K. Diverse interpretations enabling the continuity of community renewable energy projects: a case study of a woody biomass project in rural area of Japan. Local Economy. 2018;33(8):822–841. doi: 10.1177/0269094218810651.
  • Kumar L, Koukoulas AA, Mani S, et al. Integrating torrefaction in the wood pellet industry: a critical review. Energy Fuels. 2017;31(1):37–54. doi: 10.1021/acs.energyfuels.6b02803.
  • Henriques ST, Borowiecki KJ. The drivers of long-run CO2 emissions in Europe, North america and Japan since 1800. Energy Policy. 2017;101:537–549. doi: 10.1016/j.enpol.2016.11.005.
  • Duffield JS, Woodall B. Japan’s new basic energy plan. Energy Policy. 2011;39(6):3741–3749. doi: 10.1016/j.enpol.2011.04.002.
  • Goh CS, Aikawa T, Ahl A, et al. Rethinking sustainable bioenergy development in Japan: decentralised system supported by local forestry biomass. Sustain Sci. 2020;15(5):1461–1471. doi: 10.1007/s11625-019-00734-4.
  • Feldhoff T. Asset-based community development in the energy sector: energy and regional policy lessons from community power in Japan. International Planning Studies. 2016;21(3):261–277. doi: 10.1080/13563475.2016.1185939.
  • Kaygusuz K. Energy for sustainable development: a case of developing countries. Renewable and Sustainable Energy Reviews,. 2012;16(2):1116–1126. doi: 10.1016/j.rser.2011.11.013.
  • Pereira MG, Camacho CF, Freitas MAV, et al. The renewable energy market in Brazil: current status and potential. Renew Sustain Energy Rev. 2012;16(6):3786–3802. doi: 10.1016/j.rser.2012.03.024.
  • Lima MA, Gomez LD, Steele-King CG, et al. Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production. Biotechnol Biofuels. 2014;7(1):10. doi: 10.1186/1754-6834-7-10.
  • de Oliveira JP. The policymaking process for creating competitive assets for the use of biomass energy: the Brazilian alcohol programme. Renew Sustain Energy Rev. 2002;6(1-2):129–140.
  • Rosillo-Calle F, Cortez LA. Towards ProAlcool II—a review of the Brazilian bioethanol programme. Biomass Bioenergy. 1998;14(2):115–124. doi: 10.1016/S0961-9534(97)10020-4.
  • Ferreira-Leitao V, Gottschalk LMF, Ferrara MA, et al. Biomass residues in Brazil: availability and potential uses. Waste Biomass Valor. 2010;1(1):65–76. doi: 10.1007/s12649-010-9008-8.
  • Werner D, Lazaro LLB. The policy dimension of energy transition: the Brazilian case in promoting renewable energies (2000–2022). Energy Policy. 2023;175:113480. doi: 10.1016/j.enpol.2023.113480.
  • Lima M, Mendes L, Mothé G, et al. Renewable energy in reducing greenhouse gas emissions: reaching the goals of the paris agreement in Brazil. Environmental Development. 2020;33:100504. doi: 10.1016/j.envdev.2020.100504.
  • Energy R, Efficiency E. Global Trends IN Sustainable Energy Investment. 2008.
  • Chua SC, Oh TH. Green progress and prospect in Malaysia. Renew Sustain Energy Rev. 2011;15(6):2850–2861. doi: 10.1016/j.rser.2011.03.008.
  • Lowes R, Woodman B, Fitch-Roy O. Policy change, power and the development of great britain’s renewable heat incentive. Energy Policy. 2019;131:410–421. doi: 10.1016/j.enpol.2019.04.041.
  • Nasiri F, Mafakheri F, Adebanjo D, et al. Modeling and analysis of renewable heat integration into non-domestic buildings-The case of biomass boilers: a whole life asset-supply chain management approach. Biomass Bioenergy. 2016;95:244–256. doi: 10.1016/j.biombioe.2016.10.018.
  • Bunn D, Yusupov T. The progressive inefficiency of replacing renewable obligation certificates with contracts-for-differences in the UK electricity market. Energy Policy. 2015;82:298–309. doi: 10.1016/j.enpol.2015.01.002.
  • Newbery DM. Towards a green energy economy? The EU energy union’s transition to a low-carbon zero subsidy electricity system–lessons from the UK’s electricity market reform. Appl Energy. 2016;179:1321–1330. doi: 10.1016/j.apenergy.2016.01.046.
  • Chambers M, Crossland M, Westaway S, et al. Harvesting woodfuel from hedges. 2010.
  • Balat M, Ayar G. Biomass energy in the world, use of biomass and potential trends. Energy Sources. 2005;27(10):931–940. doi: 10.1080/00908310490449045.
  • Juntunen JK, Martiskainen M. Improving understanding of energy autonomy: a systematic review. Renew Sustain Energy Rev. 2021;141:110797. doi: 10.1016/j.rser.2021.110797.
  • Rosillo‐Calle F. A review of biomass energy–shortcomings and concerns. J Chem Technol Biotechnol. 2016;91(7):1933–1945. doi: 10.1002/jctb.4918.
  • Ebrahimi S, Esmaeili SAH, Sobhani A, et al. Renewable jet fuel supply chain network design: application of direct monetary incentives. Appl Energy. 2022;310:118569. doi: 10.1016/j.apenergy.2022.118569.
  • Van Holsbeeck S, Srivastava SK. Feasibility of locating biomass-to-bioenergy conversion facilities using spatial information technologies: a case study on Forest biomass in Queensland, Australia. Biomass Bioenergy. 2020;139:105620. doi: 10.1016/j.biombioe.2020.105620.
  • Zahraee SM, Shiwakoti N, Stasinopoulos P. Biomass supply chain environmental and socio-economic analysis: 40-Years comprehensive review of methods, decision issues, sustainability challenges, and the way forward. Biomass Bioenergy. 2020;142:105777. doi: 10.1016/j.biombioe.2020.105777.
  • Arent DJ, Green P, Abdullah Z, et al. Challenges and opportunities in decarbonizing the US energy system. Renew Sustain Energy Rev. 2022;169:112939. doi: 10.1016/j.rser.2022.112939.
  • Irfan M, Elavarasan RM, Ahmad M, et al. Prioritizing and overcoming biomass energy barriers: application of AHP and G-TOPSIS approaches. Technol Forecasting Social Change. 2022;177:121524. doi: 10.1016/j.techfore.2022.121524.
  • Awasthi MK, Sarsaiya S, Patel A, et al. Refining biomass residues for sustainable energy and bio-products: an assessment of technology, its importance, and strategic applications in circular bio-economy. Renew Sustain Energy Rev. 2020;127:109876. doi: 10.1016/j.rser.2020.109876.
  • Nguyen QA, Smith WA, Wahlen BD, et al. Total and sustainable utilization of biomass resources: a perspective. Front Bioeng Biotechnol. 2020;8:546. doi: 10.3389/fbioe.2020.00546.
  • Nunes LJ, Casau M, Matias JC, et al. Assessment of woody residual biomass generation capacity in the Central region of Portugal: analysis of the power production potential. Land. 2022;11(10):1722. doi: 10.3390/land11101722.
  • Guo X, Voogt J, Annevelink B, et al. Optimizing resource utilization in biomass supply chains by creating integrated biomass logistics centers. Energies. 2020;13(22):6153. doi: 10.3390/en13226153.
  • Nunes L, Causer T, Ciolkosz D. Biomass for energy: a review on supply chain management models. Renew Sustain Energy Rev. 2020;120:109658. doi: 10.1016/j.rser.2019.109658.
  • Nunes LJ, Matias JC, Loureiro LM, et al. Evaluation of the potential of agricultural waste recovery: energy densification as a factor for residual biomass logistics optimization. Appl Sci. 2020;11(1):20. doi: 10.3390/app11010020.
  • Gupta S, Berenji HR, Shukla M, et al. Opportunities in farming research from an operations management perspective. Production & Oper Manag. 2023;32(6):1577–1596. doi: 10.1111/poms.13967.
  • Miranowski J, Rosburg A. An economic breakeven model of cellulosic feedstock production and ethanol conversion with implied carbon pricing. Iowa State University, Department of Economics, Working Paper, 2010.
  • Wang Y, Zhi B, Xiang S, et al. China’s biogas industry’s sustainable transition to a Low-Carbon plan—a Socio-Technical perspective. Sustainability. 2023;15(6):5299. doi: 10.3390/su15065299.
  • Geoghegan C, O'Donoghue C. An analysis of the social and private return to land use change from agriculture to renewable energy production in Ireland. J Cleaner Prod. 2023;385:135698. doi: 10.1016/j.jclepro.2022.135698.
  • Amoah-Antwi C, Kwiatkowska-Malina J, Thornton SF, et al. Restoration of soil quality using biochar and brown coal waste: a review. Sci Total Environ. 2020;722:137852. doi: 10.1016/j.scitotenv.2020.137852.
  • Albashabsheh NT, Stamm JLH. Optimization of lignocellulosic biomass-to-biofuel supply chains with densification: literature review. Biomass Bioenergy. 2021;144:105888. doi: 10.1016/j.biombioe.2020.105888.
  • Das SK, Ghosh GK, Avasthe R, et al. Compositional heterogeneity of different biochar: effect of pyrolysis temperature and feedstocks. J Environ Manage. 2021;278(Pt 2):111501. doi: 10.1016/j.jenvman.2020.111501.
  • Vera I, Hoefnagels R, van der Kooij A, et al. A carbon footprint assessment of multi‐output biorefineries with international biomass supply: a case study for The Netherlands. Biofuels, Bioprod Bioref. 2020;14(2):198–224. doi: 10.1002/bbb.2052.
  • Makepa DC, Chihobo CH, Ruziwa WR, et al. A systematic review of the techno-economic assessment and biomass supply chain uncertainties of biofuels production from fast pyrolysis of lignocellulosic biomass. Fuel Communications. 2023;14:100086. doi: 10.1016/j.jfueco.2023.100086.
  • Weyand J, Habermeyer F, Dietrich R-U. Process design analysis of a hybrid power-and-biomass-to-liquid process–an approach combining life cycle and techno-economic assessment. Fuel. 2023;342:127763. doi: 10.1016/j.fuel.2023.127763.
  • Herold M, Carter S, Avitabile V, et al. The role and need for space-based Forest biomass-related measurements in environmental management and policy. Surv Geophys. 2019;40(4):757–778. doi: 10.1007/s10712-019-09510-6.
  • Mamo T, Montastruc L, Negny S, et al. Integreted strategic and tactical optimization planning of biomass to bioethanol supply chains coupled with operational plan using vehicle routing: a case study in Ethiopia. Computers & Chemical Engineering. 2023;172:108186. doi: 10.1016/j.compchemeng.2023.108186.
  • Wang J. Forest and biomass supply chain analysis (Forest and biomass harvest and logistics. Springer; 2022. pp. 249–277.
  • Harris K, Grim RG, Huang Z, et al. A comparative techno-economic analysis of renewable methanol synthesis from biomass and CO2: opportunities and barriers to commercialization. Appl Energy. 2021;303:117637. doi: 10.1016/j.apenergy.2021.117637.
  • Asghar A, Sairash S, Hussain N, et al. Current challenges of biomass refinery and prospects of emerging technologies for sustainable bioproducts and bioeconomy. Biofuels Bioprod Bioref. 2022;16(6):1478–1494. doi: 10.1002/bbb.2403.
  • Palo E, Iaquaniello G, Mosca L. Calculate the production costs of your own process (studies in surface science and catalysis. Vol. 179, Elsevier; 2020. pp. 141–157.
  • Aui A, Wang Y, Mba-Wright M. Evaluating the economic feasibility of cellulosic ethanol: a meta-analysis of techno-economic analysis studies. Renew Sustain Energy Rev. 2021;145:111098. doi: 10.1016/j.rser.2021.111098.
  • Yue D, You F, Snyder SW. Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comp. Chem Engin. 2014;66:36–56. doi: 10.1016/j.compchemeng.2013.11.016.
  • Niu Y, Lv Y, Lei Y, et al. Biomass torrefaction: properties, applications, challenges, and economy. Renew Sustain Energy Rev. 2019;115:109395. doi: 10.1016/j.rser.2019.109395.
  • Uslu A, Faaij AP, Bergman PC. Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation. Energy. 2008;33(8):1206–1223. doi: 10.1016/j.energy.2008.03.007.
  • Tumuluru JS. Effect of process variables on the density and durability of the pellets made from high moisture corn stover. Biosyst Eng. 2014;119:44–57. doi: 10.1016/j.biosystemseng.2013.11.012.
  • Alizadeh P, Tabil L, Adapa P, et al. Densification of wood sawdust for bioenergy applications. Fuels. 2022;3(1)2022, :152–175. 10.3390/fuels3010010
  • Acharya B, Sule I, Dutta A. A review on advances of torrefaction technologies for biomass processing. Biomass Conv Bioref. 2012;2(4):349–369. doi: 10.1007/s13399-012-0058-y.
  • Ramos A, Monteiro E, Rouboa A. Biomass pre-treatment techniques for the production of biofuels using thermal conversion methods–a review. Energy Convers Manage. 2022;270:116271. doi: 10.1016/j.enconman.2022.116271.
  • Bridgwater A. The technical and economic feasibility of biomass gasification for power generation. Fuel. 1995;74(5):631–653. doi: 10.1016/0016-2361(95)00001-L.
  • Faaij A. Modern biomass conversion technologies. Mitig Adapt Strat Glob Change. 2006;11(2):343–375. doi: 10.1007/s11027-005-9004-7.
  • Thek G, Obernberger I. Wood pellet production costs under Austrian and in comparison to swedish framework conditions. Biomass Bioenergy. 2004;27(6):671–693. doi: 10.1016/j.biombioe.2003.07.007.
  • Hamelinck CN, Suurs RA, Faaij AP. International bioenergy transport costs and energy balance. Biomass Bioenergy. 2005;29(2):114–134. doi: 10.1016/j.biombioe.2005.04.002.
  • Lamers P, Roni MS, Tumuluru JS, et al. Techno-economic analysis of decentralized biomass processing depots. Bioresour Technol. 2015;194:205–213. doi: 10.1016/j.biortech.2015.07.009.
  • Bhaskar T, Bhavya B, Singh R, et al. Thermochemical conversion of biomass to biofuels (biofuels. Elsevier; 2011. pp. 51–77.
  • Nunes L, Matias J, Catalão J. A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew Sustain Energy Rev. 2014;40:153–160. doi: 10.1016/j.rser.2014.07.181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.