297
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Non-energetic application of carbon-rich torrefied biomass in the bioeconomy: a review

, , , , & ORCID Icon
Pages 389-405 | Received 21 Apr 2023, Accepted 18 Aug 2023, Published online: 28 Aug 2023

References

  • Bugge M, Hansen T, Klitkou A. What is the bioeconomy? A review of the literature. Sustainability. 2016; 8(7):691. doi: 10.3390/su8070691.
  • Nunes LJR, Causer TP, Ciolkosz D. Biomass for energy: a review on supply chain management models. Renew Sustain Energy Rev. 2020;120:109658. doi: 10.1016/j.rser.2019.109658.
  • Nunes LJR, Matias JCO, Loureiro LMEF, et al. Evaluation of the potential of agricultural waste recovery: energy densification as a factor for residual biomass logistics optimization. Appl Sci. 2020;11(1):20. doi: 10.3390/app11010020.
  • USDA FACT SHEET: Overview of USDA’s BioPreferred Program; [accessed 2023 Jun 6]. Available from: https://www.usda.gov/media/press-releases/2016/02/18/fact-sheet-overview-usdas-biopreferred-program#:∼:text=Biobased%20products%20are%20derived%20from,%2C%20marine%2C%20and%20forestry%20materials
  • Dahiya S, Katakojwala R, Ramakrishna S, et al. Biobased products and life cycle assessment in the context of circular economy and sustainability. Mater Circ Econ. 2020;2(1):7. doi: 10.1007/s42824-020-00007-x.
  • de Jong E, Higson A, Walsh P, et al. Bio-Based chemicals value added products from biorefineries. IEA Bioenergy Task42 Bioref. 2012;34:1–33.
  • McCormick K, Kautto N. 2013. The bioeconomy in Europe: an overview. Sustainability. 5(6), 2589–2608. doi: 10.3390/su5062589.
  • Nunes LJR. Biomass gasification as an industrial process with effective proof-of-concept: a comprehensive review on technologies, processes and future developments. Res Eng. 2022;14:100408. doi: 10.1016/j.rineng.2022.100408.
  • Carus M, Dammer L. The circular bioeconomy - concepts, opportunities, and limitations. Ind Biotechnol. 2018;14(2):83–91. doi: 10.1089/ind.2018.29121.mca.
  • Casau M, Cancela DCM, Matias JCO, et al. Coal to biomass conversion as a path to sustainability: a hypothetical scenario at Pego Power Plant (Abrantes, Portugal). Resources. 2021;10(8):84. doi: 10.3390/resources10080084.
  • Nunes LJR, Casau M, Matias JCO, et al. Coal to biomass transition as the path to sustainable energy production: a hypothetical case scenario with the conversion of Pego Power Plant (Portugal). Appl Sci. 2023;13(7): 4349. doi: 10.3390/app13074349.
  • Linser S, Greimel M, Pyka A, et al. Forest bioeconomy in Brazil: potential innovative products from the forest sector. Land. 2022;11(8):1297. doi: 10.3390/land11081297.
  • Palátová P, Purwestri RC, Marcineková L. Forest bioeconomy in three European countries: Finland, the Czech Republic and the Slovak Republic. Int For Rev. 2022;24(4):594–606.
  • Johnson T, Bioenergy IA-B. Rural development opportunities in the bioeconomy. Biomass Bioenergy. 2014;63: 341–344.
  • Wreford A, Bayne K, Edwards P, et al. Enabling a transformation to a bioeconomy in New Zealand. EnvironInnov Soc Transit 2019;31:184–199.
  • USDA Success Stories. [accessed 2023 Jun 6]. Available from: https://www.biopreferred.gov/BioPreferred/faces/pages/SuccessStories.xhtml
  • Rogers JN, Stokes B, Dunn J, et al. An assessment of the potential products and economic and environmental impacts resulting from a billion ton bioeconomy. Biofuels Bioprod Bioref. 2017;11(1):110–128. doi: 10.1002/bbb.1728.
  • Ramos A, Monteiro E, Rouboa A. Biomass pre-treatment techniques for the production of biofuels using thermal conversion methods – a review. Energy Convers Manag. 2022;270:116271. doi: 10.1016/j.enconman.2022.116271.
  • Siwal SS, Zhang Q, Devi N, et al. Recovery processes of sustainable energy using different biomass and wastes. Renew Sustain Energy Rev. 2021;150:111483. doi: 10.1016/j.rser.2021.111483.
  • Nunes L, J, R. A case study about biomass torrefaction on an industrial scale: solutions to problems related to self-heating, difficulties in pelletizing, and excessive wear of production equipment. Appl Sci. 2020;10(7):2546. doi: 10.3390/app10072546.
  • Nunes L, Matias J, Catalao J. Torrefaction of biomass for energy applications: from fundamentals to industrial scale. Cambridge, MA: Academic Press. 2017.
  • Białowiec A, Micuda M, Szumny A, et al. Quantification of VOC emissions from carbonized refuse-derived fuel using solid-phase microextraction and gas chromatography-mass spectrometry. Molecules. 2018;23(12):3208. doi: 10.3390/molecules23123208.
  • Białowiec A, Micuda M, Szumny A, et al. Waste to carbon: influence of structural modification on VOC emission kinetics from stored carbonized refuse-derived fuel. Sustainability. 2019;11(3):935. doi: 10.3390/su11030935.
  • Nunes LJR, Rodrigues AM, Matias JCO, et al. Production of biochar from vine pruning: waste recovery in the wine industry. Agriculture. 2021;11(6):489. doi: 10.3390/agriculture11060489.
  • Idowu IA, Hashim K, Shaw A, et al. Enhancing the fuel properties of beverage wastes as non-edible feedstock for biofuel production. Biofuels. 2021;13:763–770, doi: 10.1080/17597269.2021.1923934.
  • Florindo T, Ferraz AI, Rodrigues AC, et al. Residual biomass recovery in the wine sector: creation of value chains for vine pruning. Agriculture. 2022;12(5): 670. doi: 10.3390/agriculture12050670.
  • Chen W-H, Huang M-Y, Chang J-S, et al. Torrefaction operation and optimization of microalga residue for energy densification and utilization. Appl Energy. 2015;154:622–630. doi: 10.1016/j.apenergy.2015.05.068.
  • Zhang C, Ho S-H, Chen W-H, et al. Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index. Appl Energy. 2018;220:598–604. doi: 10.1016/j.apenergy.2018.03.129.
  • Tripathi J, Richard TL, Memis B, et al. Interactions of torrefaction and alkaline pretreatment with respect to glucose yield of hydrolyzed wheat straw. Biomass. 2022;2(4):264–278. doi: 10.3390/biomass2040018.
  • Prins MJ, Ptasinski KJ, Janssen FJ. Torrefaction of wood. J Anal Appl Pyrolysis. 2006;77(1):28–34. doi: 10.1016/j.jaap.2006.01.002.
  • Nocquet T, Dupont C, Commandré JM, et al. Study on mass loss and gas release during torrefaction of woody biomass and its constituents for injection in entrained flow gasifier. In: Proceedings of the 3rd International Congress on Green Process Engineering; 2011; Kuala-Lumpur, Malaysia. https://agritrop.cirad.fr/577306/1/Com%20par%20affiche_NOCQUET%20Albi.pdf
  • Peng J, Bi XT, Lim J, et al. Development of torrefaction kinetics for British Columbia softwoods. Int J Chem React Eng. 2012;10(1). doi: 10.1515/1542-6580.2878.
  • Shang L, Ahrenfeldt J, Holm JK, et al. Intrinsic kinetics and devolatilization of wheat straw during torrefaction. J Anal Appl Pyrolysis. 2013;100:145–152. doi: 10.1016/j.jaap.2012.12.010.
  • Carrasco JC, Oporto GS, Zondlo J, et al. Observed kinetic parameters during the torrefaction of red oak (Quercus rubra) in a pilot rotary kiln reactor. Bioresources. 2014;9(3):5417–5437. doi: 10.15376/biores.9.3.5417-5437.
  • Bach Q-V, Khalil RA, Tran K-Q, et al. Torrefaction kinetics of Norwegian biomass fuels. Chem Eng Trans. 2014;37:49–54.
  • Brachi P, Miccio F, Miccio M, et al. Isoconversional kinetic analysis of olive pomace decomposition under torrefaction operating conditions. Fuel Process Technol. 2015;130:147–154. doi: 10.1016/j.fuproc.2014.09.043.
  • Chew J-J, Doshi V, Yong S-T, et al. Kinetic study of torrefaction of oil palm shell, mesocarp and empty fruit bunch. J Therm Anal Calorim. 2016;126(2):709–715. doi: 10.1007/s10973-016-5518-3.
  • Harun NHHM, Samad NAFA, Saleh S. Development of kinetics model for torrefaction of empty fruit bunch from palm oil waste. Energy Proc. 2017;105:744–749. doi: 10.1016/j.egypro.2017.03.385.
  • Chiou B-S, Cao T, Valenzuela-Medina D, et al. Torrefaction kinetics of almond and walnut shells. J Therm Anal Calorim. 2018;131(3):3065–3075. doi: 10.1007/s10973-017-6721-6.
  • Świechowski K, Stegenta-Dąbrowska S, Liszewski M, et al. Oxytree pruned biomass torrefaction: process kinetics. Materials. 2019;12(20):3334. doi: 10.3390/ma12203334.
  • Ibrahim RHH, Darvell LI, Jones JM, et al. Physicochemical characterisation of torrefied biomass. J Anal Appl Pyrolysis. 2013;103:21–30. doi: 10.1016/j.jaap.2012.10.004.
  • Vuppaladadiyam A, Vuppaladadiyam SS, Sahoo A, et al. Bio-oil and biochar from the pyrolytic conversion of biomass: a current and future perspective on the trade-off between economic, environmental, and technical indicators. Sci Tot Environ.2023;857:159155.
  • Ahmad F, Zhang Z, Doherty WO, et al. The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery. Renew Sust Energ Rev. 2019;109:386–411.
  • Guo M, Song W, Buhain J. Bioenergy and biofuels: history, status, and perspective. Renew Sustain Energy Rev. 2015;42:712–725.
  • Hoang A, Ong H, Fattah I, et al. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Process Technol. 2021;223:106997.
  • Ong H, Chen W, Farooq A, et al. Catalytic thermochemical conversion of biomass for biofuel production: a comprehensive review. Renew Sustain Energy Rev. 2019;113:109266.
  • Velusamy K, Devanand J, Kumar P, et al. A review on nano-catalysts and biochar-based catalysts for biofuel production. Fuel. 2021;306:121632. doi: 10.1016/j.fuel.2021.121632.
  • Dudek M, Świechowski K, Manczarski P, et al. The effect of biochar addition on the biogas production kinetics from the anaerobic digestion of brewers’ spent grain. Energies. 2019, 12(8):1518, doi: 10.3390/en12081518.
  • O’Brien S, Koziel J, Banik C, et al. Synergy of thermochemical treatment of dried distillers grains with solubles with bioethanol production for increased sustainability and profitability. Energies. 2020;13(17):4528. doi: 10.3390/en13174528.
  • Nunes LJR, Matias JCO, Catalao JPS. Application of biomass for the production of energy in the Portuguese textile industry. In: Proceedings of 2013 International Conference on Renewable Energy Research and Applications, ICRERA 2013; 2013. p. 336–341. doi: 10.1109/ICRERA.2013.6749776.
  • Nunes LJR, Meireles CIR, Gomes CJP, et al. Socioeconomic aspects of the forests in Portugal: recent evolution and perspectives of sustainability of the resource. Forests. 2019;10(5):361. doi: 10.3390/f10050361.
  • Nunes LJR, Godina R, Matias JCO, et al. Evaluation of the utilization of woodchips as fuel for industrial boilers. J Clean Prod. 2019;223:270–277. doi: 10.1016/j.jclepro.2019.03.165.
  • DeVallance DB, Pečnik JG, Schwarzkopf M. Evaluation of torrefied short rotation shrub willow as value-added fillers for wood plastic composites. 2019. p. 246.
  • Chiou B, Valenzuela‐Medina D, Wechsler M, et al. Torrefied biomass‐polypropylene composites. J Appl Polym Sci. 2015;132(10):n/a–n/a. doi: 10.1002/app.41582.
  • DeVallance DB, Oporto GS, Quigley P. Investigation of hardwood biochar as a replacement for wood flour in wood–polypropylene composites. J Elast Plast. 2016;48(6):510–522. doi: 10.1177/0095244315589655.
  • Volfson SI, Fayzullin IZ, Musin IN, et al. The physicomechanical and rheological characteristics of wood–polymer composites based on thermally and mechanically modified filler. Int Polym Sci Technol. 2017;44(2):49–54. doi: 10.1177/0307174X1704400208.
  • Vold JL, Ulven CA, Chisholm BJ. Torrefied biomass filled polyamide biocomposites: mechanical and physical property analysis. J Mater Sci. 2015;50(2):725–732. doi: 10.1007/s10853-014-8632-2.
  • Lu W, Yu W, Han X, et al. Torrefaction pretreatment facilitated solvents-resistant and stable wood-plastic composites. Ind Crops Prod. 2022;177:114454. doi: 10.1016/j.indcrop.2021.114454.
  • McCaffrey Z, Torres L, Flynn S, et al. Recycled polypropylene-polyethylene torrefied almond shell biocomposites. Ind Crops Prod. 2018;125:425–432. doi: 10.1016/j.indcrop.2018.09.012.
  • Berthet M-A, Commandré J-M, Rouau X, et al. Torrefaction treatment of lignocellulosic fibres for improving fibre/matrix adhesion in a biocomposite. Mater Des. 2016;92:223–232. doi: 10.1016/j.matdes.2015.12.034.
  • Moustafa H, Guizani C, Dupont C, et al. Utilization of torrefied coffee grounds as reinforcing agent to produce high-quality biodegradable PBAT composites for food packaging applications. ACS Sustainable Chem Eng. 2017;5(2):1906–1916. doi: 10.1021/acssuschemeng.6b02633.
  • Ortiz-Barajas DL, Arévalo-Prada JA, Fenollar O, et al. Torrefaction of coffee husk flour for the development of injection-molded green composite pieces of polylactide with high sustainability. Appl Sci. 2020;10(18):6468. doi: 10.3390/app10186468.
  • Torres LF, McCaffrey Z, Washington W, et al. Torrefied agro‐industrial residue as filler in natural rubber compounds. J Appl Polym Sci. 2021;138(28):50684. doi: 10.1002/app.50684.
  • Zou S, Li H, Liu L, et al. Research on improving comprehensive properties of a new sawdust composite insulation material by torrefaction. Process Saf Environ Protect. 2021;152:361–374. doi: 10.1016/j.psep.2021.06.015.
  • Hovanec D, DeVallance DB. Using torrefied wood to improve moisture resistance of oriented strandboard [Unpublished manuscript]. Wood Science & Technology Program, West Virginia University; 2013.
  • Ryłko-Polak I, Komala W, Białowiec A. The reuse of biomass and industrial waste in biocomposite construction materials for decreasing natural resource use and mitigating the environmental impact of the construction industry: a review. Materials. 2022;15(12):4078. doi: 10.3390/ma15124078.
  • Joseph S, Cowie AL, van Zwieten L, et al. How biochar works, and when it doesn’t: a review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy. 2021;13(11):1731–1764. doi: 10.1111/gcbb.12885.
  • Ogura T, Masukujane M, Coetzee T, et al. Improvement of physical, chemical and biological properties of aridisol from Botswana by the incorporation of torrefied biomass. Sci Rep. 2016;6(1):28011. doi: 10.1038/srep28011.
  • Thengane SK, Kung KS, Gupta A, et al. Oxidative torrefaction for cleaner utilization of biomass for soil amendment. Clean Eng Technol. 2020;1:100033. doi: 10.1016/j.clet.2020.100033.
  • Igalavithana AD, Lee S-E, Lee YH, et al. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils. Chemosphere. 2017;174:593–603. doi: 10.1016/j.chemosphere.2017.01.148.
  • Cheng H, Hill PW, Bastami MS, et al. Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil. GCB Bioenergy. 2017;9(6):1110–1121. doi: 10.1111/gcbb.12402.
  • Niemiec M, Komorowska M, Mudryk K, et al. Evaluation of the fertilizing potential of products based on torrefied biomass and valorized with mineral additives. In: Renewable energy sources: engineering, technology, innovation. Springer; 2020. p. 267–275.
  • Choi C, Lee C, Yoo J, et al. Effect of filtered torrefied wood powder extract as a plant growth retardant. Bioresources. 2016;11(4):8419–8424. doi: 10.15376/biores.11.4.8419-8424.
  • Liao S, Pan B, Li H, et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Environ Sci Technol. 2014;48(15):8581–8587. doi: 10.1021/es404250a.
  • Sarvaramini A, Assima GP, Beaudoin G, et al. Biomass torrefaction and CO2 capture using mining wastes–a new approach for reducing greenhouse gas emissions of Co-firing plants. Fuel. 2014;115:749–757. doi: 10.1016/j.fuel.2013.07.087.
  • Tran K-Q, Trinh TN, Bach Q-V. Development of a biomass torrefaction process integrated with Oxy-Fuel combustion. Bioresour Technol. 2016;199:408–413. doi: 10.1016/j.biortech.2015.08.106.
  • Damiani D. Safe geologic storage of captured carbon dioxide: two decades of DOE’s carbon storage R&D program in review. US DOE Office of Fossil Energy; 2020.
  • Nunes LJR, Matias JCO. Biomass torrefaction as a key driver for the sustainable development and decarbonization of energy production. Sustainability. 2020;12(3):922. doi: 10.3390/su12030922.
  • Bach Q-V, Gye H-R, Song D, et al. High quality product gas from biomass steam gasification combined with torrefaction and carbon dioxide capture processes. Int J Hydrogen Energy. 2019;44(28):14387–14394. doi: 10.1016/j.ijhydene.2018.11.237.
  • Irawan A. Potential and opportunity of Co-firing power plant in Indonesia through torrefaction of empty fruit bunch (EFB)-a review. WCEJ Untirta. 2021;5(1):25–32. doi: 10.48181/wcej.v5i1.12139.
  • Chen W-H, Lin B-J, Colin B, et al. Hygroscopic transformation of woody biomass torrefaction for carbon storage. Appl Energy. 2018;231:768–776. doi: 10.1016/j.apenergy.2018.09.135.
  • Kumar BM, Nair PKR. Carbon sequestration potential of agroforestry systems: opportunities and challenges. 2011.
  • Torvanger A. Governance of bioenergy with carbon capture and storage (BECCS): accounting, rewarding, and the Paris agreement. Climate Policy. 2019;19(3):329–341. doi: 10.1080/14693062.2018.1509044.
  • Babin A, Vaneeckhaute C, Iliuta MC. Potential and challenges of bioenergy with carbon capture and storage as a carbon-negative energy source: a review. Biomass Bioenergy. 2021;146:105968. doi: 10.1016/j.biombioe.2021.105968.
  • Prins MJ, Ptasinski KJ, Janssen FJJG. Torrefaction of wood: part 2. Analysis of products. J Anal Appl Pyrolysis. 2006;77(1):35–40. doi: 10.1016/j.jaap.2006.01.001.
  • Doddapaneni TRKC, Kikas T. Integrating torrefaction of pulp industry sludge with anaerobic digestion to produce bioenergy and biochemicals: techno-economic and environmental feasibility analysis. Chem Eng J Adv. 2023;14:100463. doi: 10.1016/j.ceja.2023.100463.
  • Du C, Lu P, Tsubaki N. Efficient and new production methods of chemicals and liquid fuels by carbon monoxide hydrogenation. ACS Omega. 2020;5(1):49–56. doi: 10.1021/acsomega.9b03577.
  • Hwang HW, Yoon J, Min K, et al. Two-Stage bioconversion of carbon monoxide to biopolymers via formate as an intermediate. Chem Eng J. 2020;389:124394. doi: 10.1016/j.cej.2020.124394.
  • Morais A R C, da Costa Lopes AM, Bogel-Łukasik R. Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem Rev. 2015; 115(1):3–27. doi: 10.1021/cr500330z.
  • Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev. 2014;114(3):1709–1742. doi: 10.1021/cr4002758.
  • Aresta M, Dibenedetto A. Industrial utilization of carbon dioxide (CO2). In: Developments and innovation in carbon dioxide (CO2) capture and storage technology. Elsevier; 2010. p. 377–410. doi: 10.1533/9781845699581.4.377.
  • Wittwer SH, Robb WM. Carbon dioxide enrichment of greenhouse atmospheres for food crop production. Econ Bot. 1964;18(1):34–56. doi: 10.1007/BF02904000.
  • Iglina T, Iglin P, Pashchenko D. Industrial CO2 capture by algae: a review and recent advances. Sustainability. 2022;14(7): 3801. doi: 10.3390/su14073801.
  • Proskurina S, Heinimö J, Schipfer F, et al. Biomass for industrial applications: the role of torrefaction. Renew Energy. 2017;111:265–274. doi: 10.1016/j.renene.2017.04.015.
  • Mousa E, Wang C, Riesbeck J, et al. Biomass applications in iron and steel industry: an overview of challenges and opportunities. Renew Sustain Energy Rev. 2016;65:1247–1266. doi: 10.1016/j.rser.2016.07.061.
  • Babich A, Senk D. Biomass use in the steel industry: back to the future. Stahl Und Eisen. 2013;133:57–67.
  • Chen W-H, Du S-W, Tsai C-H, et al. Torrefied biomasses in a drop tube furnace to evaluate their utility in blast furnaces. Bioresour Technol. 2012;111:433–438. doi: 10.1016/j.biortech.2012.01.163.
  • Eseyin AE, Steele PH, Pittman CU. Jr, Current trends in the production and applications of torrefied wood/biomass-a review. Bioresources. 2015;10(4):8812–8858. doi: 10.15376/biores.10.4.8812-8858.
  • Zheng A, Zhao Z, Huang Z, et al. Catalytic fast pyrolysis of biomass pretreated by torrefaction with varying severity. Energy Fuels. 2014;28(9):5804–5811. doi: 10.1021/ef500892k.
  • del Grosso M, Sridharan B, Tsekos C, et al. A modelling based study on the integration of 10 MWth indirect torrefied biomass gasification, methanol and power production. Biomass Bioenergy. 2020;136:105529. doi: 10.1016/j.biombioe.2020.105529.
  • Clausen LR, Elmegaard B, Ahrenfeldt J, et al. Thermodynamic analysis of small-scale dimethyl ether (DME) and methanol plants based on the efficient two-stage gasifier. Energy. 2011;36(10):5805–5814. doi: 10.1016/j.energy.2011.08.047.
  • Tripathi J, Ciolkosz D, Sykes DG. Torrefied paper as a packaging material and subsequently as a bioethanol substrate: synergy of torrefaction and alkaline treatment for increased utility. Resour Conserv Recycl. 2023;191:106882. doi: 10.1016/j.resconrec.2023.106882.
  • Cremers M, Koppejan J, Middelkamp J, et al. Status overview of torrefaction technologies: a review of the commercialisation status of biomass torrefaction. IEA Bioenergy. 2015;1–52.
  • Malico I, Pereira RN, Gonçalves AC, et al. Current status and future perspectives for energy production from solid biomass in the European industry. Renew Sustain Energy Rev. 2019;112:960–977. doi: 10.1016/j.rser.2019.06.022.
  • Nunes LJR, Matias JCO, Catalão JPS. A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew Sustain Energy Rev. 2014;40:153–160. doi: 10.1016/j.rser.2014.07.181.
  • Ribeiro JMC, Godina R, Matias JC, et al. Future perspectives of biomass torrefaction: review of the current state-of-the-art and research development. Sustainability. 2018;10(7):2323. doi: 10.3390/su10072323.
  • Kleinschmidt CP. Overview of international developments in torrefaction. In: Proceedings of the Torrefaction Workshop. 2011. Available from: https://task32.ieabioenergy.com/wp-content/uploads/sites/2/2017/03/Kleindschmidt_Paper.pdf
  • Causer T. Biomass Magazine. 2019 Jul. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj1xde___SAAxXVTKQEHbLlDRUQFnoECBgQAQ&url=https%3A%2F%2Fbiomassmagazine.com%2Farticles%2F16329%2Fwhy-hasnundefinedt-torrefaction-taken-off&usg=AOvVaw2Gpq7Z0uVRmxxYHv-KJAew&opi=89978449
  • Causer T. Biomass Magazine. 2020 Oct. Available from: https://biomassmagazine.com/articles/17391/taking-another-look-at-torrefaction
  • Acharya B, Sule I, Dutta A. A review on advances of torrefaction technologies for biomass processing. Biomass Conv Bioref. 2012;2(4):349–369. doi: 10.1007/s13399-012-0058-y.
  • Junsatien W, Soponpongpipat N, Phetsong S. Torrefaction reactors. J Sci Technol Mahasarakham Univ. 2013;32:84–91.
  • Nowling U. Power Magazine. 2018 Mar. Available from: https://www.powermag.com/successful-torrefied-biomass-test-burn-at-a-coal-power-plant/
  • Ravindranath NH, Somashekar HI, Nagaraja MS, et al. Assessment of sustainable non-plantation biomass resources potential for energy in India. Biomass Bioenergy. 2005;29(3):178–190. doi: 10.1016/j.biombioe.2005.03.005.
  • Junfeng L, Runqing H, Yanqin S, et al. Assessment of sustainable energy potential of non-plantation biomass resources in China. Biomass Bioenergy. 2005;29(3):167–177. doi: 10.1016/j.biombioe.2005.03.006.
  • GEMCO Biomass Fuel in Vietnam; [accessed 2022 Oct 9]. Available from: http://www.gemcopelletmills.com/biomass-energy-in-vietnam.html
  • Himel Md TF, Khatun S, Rahman M, et al. A prospective assessment of biomass energy resources: potential, technologies and challenges in Bangladesh. JENRR. 2019;3(4):1–25. doi: 10.9734/jenrr/2019/v3i430108.
  • Sajjakulnukit B, Yingyuad R, Maneekhao V, et al. Assessment of sustainable energy potential of non-plantation biomass resources in Thailand. Biomass Bioenergy. 2005;29(3):214–224. doi: 10.1016/j.biombioe.2005.03.009.
  • Elauria JC, Castro MLY, Elauria MM, et al. Assessment of sustainable energy potential of non-plantation biomass resources in the Philippines. Biomass Bioenergy. 2005;29(3):191–198. doi: 10.1016/j.biombioe.2005.03.007.
  • Anonynomous Farmers Burn Wheat Stubble despite Ban. [accessed 2022 Sept 27]. Available from: http://en.people.cn/90882/8285589.html
  • Dutta T. India’s farmers happy as ban on smoky stubble burning repealed; [accessed 2022 Sept 27]. Available from: https://www.thenationalnews.com/world/2021/11/28/indias-farmers-back-stubble-burning-law-change-but-urge-give-us-a-substitute/
  • Stapczynski S, Inajima T. Japan seeks to aggressively cut fossil fuel, lift renewables; [accessed 2022 Sept 27]. Available from: https://www.bloomberg.com/news/articles/2021-07-21/japan-gets-aggressive-on-cutting-fossil-fuel-raising-renewables
  • Zinglersen C. A new era of shared clean-energy leadership begins in China; [accessed 2022 Sept 27]. Available from: https://policycommons.net/artifacts/1343764/a-new-era-of-shared-clean-energy-leadership-begins-in-china/1955925/
  • Birol F, Kant A. India’s clean energy transition is rapidly underway, benefiting the entire world; [accessed 2022 Sept 27]. Available from: https://www.iea.org/commentaries/india-s-clean-energy-transition-is-rapidly-underway-benefiting-the-entire-world
  • Strauss W. The next wave of Japanese pellet fuel demand will be from the large utility power stations. FutureMetrics LLC; 2021. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj5v-jPgfWAAxVPcKQEHdLuCxkQFnoECBIQAQ&url=https%3A%2F%2Ffuturemetrics.info%2Fwp-content%2Fuploads%2F2021%2F12%2FPotential%2520Demand%2520for%2520Pellet%2520Fuel%2520in%2520Japan%2520from%2520Major%2520Utility%2520Power%2520Stations%2520-%2520FutureMetrics%2520-%2520December%25202%25202021.pdf&usg=AOvVaw2j81flXvKCJ3ggp_DLHCkt&opi=89978449
  • Gent S, Twedt M, Gerometta C, et al. Torrefaction bioenergy generation. In: Theoretical and applied aspects of biomass torrefaction: for biofuels and value-added products. Cambridge, MA: Butterwort-Heinemann (Elsevier); 2017. p. 123–150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.