474
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Advancing the circular economy through the thermochemical conversion of waste to biochar: a review on sawdust waste-derived fuel

, , ORCID Icon, , , , & ORCID Icon show all
Pages 433-447 | Received 03 May 2023, Accepted 30 Aug 2023, Published online: 13 Sep 2023

References

  • Iwuozor KO, Emenike EC, Ighalo JO, et al. Valorization of sugar industry’s by-products: a perspective. Sugar Tech. 2022;24(4):1052–1078. doi: 10.1007/s12355-022-01143-1.
  • Emenike EC, Adeniyi AG, Iwuozor KO, et al. A critical review on the removal of mercury (Hg2+) from aqueous solution using nanoadsorbents. Environ Nanotechnol Monit Manage. 2023;20:100816. doi: 10.1016/j.enmm.2023.100816.
  • Al-Dawody MF, Bhatti S. Effect of variable compression ratio on the combustion, performance and emission parameters of a diesel engine fuelled with diesel and soybean biodiesel blending. World Appl Sci J. 2014;30(12):1852–1858.
  • Bantacut T, Indriyani F. Energy sufficiency of biomass and wastewater in closed process of sago starch production. Industria. 2022;11(1):10–18. doi: 10.21776/ub.industria.2022.011.01.2.
  • Adeniyi AG, Adeyanju CA, Emenike EC, et al. Thermal energy recovery and valorisation of delonix regia stem for biochar production. Environ Chall. 2022;9:100630. doi: 10.1016/j.envc.2022.100630.
  • Al-Dawody MF, Maki DF, Al-Farhany K, et al. Effect of using spirulina algae methyl ester on the performance of a diesel engine with changing compression ratio: an experimental investigation. Sci Rep. 2022;12(1):18183. doi: 10.1038/s41598-022-23233-6.
  • Ahmed A, Bakar MSA, Sukri RS, et al. Sawdust pyrolysis from the furniture industry in an auger pyrolysis reactor system for biochar and bio-oil production. Energy Convers Manage. 2020;226:113502. doi: 10.1016/j.enconman.2020.113502.
  • Adeniyi AG, Amusa VT, Iwuozor KO, et al. Valorization of waste biaxially‐oriented polypropylene (BOPP) plastic films by its Co‐carbonization with almond leaves. Env Prog Sustain Energy. 2023;42(4):e14064. doi: 10.1002/ep.14064.
  • Adeniyi AG, Ogunniyi S, Iwuozor KO, et al. Thermochemical conversion of african balsam leaves‐cow dung hybrid wastes into biochar. Biofuels Bioprod Bioref. 2023;17(3):510–522. doi: 10.1002/bbb.2453.
  • Adelodun AA, Adeniyi AG, Ighalo JO, et al. Thermochemical conversion of oil palm fiber‐LDPE hybrid waste into biochar. Biofuels, Bioprod Bioref. 2020;14(6):1313–1323. doi: 10.1002/bbb.2130.
  • Emenike EC, Iwuozor KO, Anidiobi SU. Heavy metal pollution in aquaculture: sources, impacts and mitigation techniques. Biol Trace Elem Res. 2022;200(10):4476–4492. doi: 10.1007/s12011-021-03037-x.
  • Susmiati Y. The prospect of bioethanol production from agricultural waste and organic waste. Industria. 2018;7(2):67–80. doi: 10.21776/ub.industria.2018.007.02.1.
  • Al-Dawody M, Al-Farhany K, Hamza NH, et al. Numerical study for the spray characteristics of diesel engine powered by biodiesel fuels under different injection pressures. JER. 2021;10(1B):264–289. doi: 10.36909/jer.9821.
  • Pan Z-Q, Huang H-J, Zhou C-F, et al. Highly efficient conversion of camphor tree sawdust into bio-oil and biochar products by liquefaction in ethanol-water cosolvent. J Anal Appl Pyrolysis. 2018;136:186–198. doi: 10.1016/j.jaap.2018.10.006.
  • Emenike EC, Odimayomi KP, Iwuozor KO, et al. Synthesis of activated carbon monolith from lignocellulosic material: evaluation of product quality. MRS Adv. 2023:1–7. doi: 10.1557/s43580-023-00584-4.
  • Ogunlalu O, Oyekunle IP, Iwuozor KO, et al. Trends in the mitigation of heavy metal ions from aqueous solutions using unmodified and chemically-modified agricultural waste adsorbents. Curr Res Green Sustain Chem. 2021;4:100188. doi: 10.1016/j.crgsc.2021.100188.
  • Emenike EC, Iwuozor KO, Saliu OD, et al. Advances in the extraction, classification, modification, emerging and advanced applications of crystalline cellulose: a review. Carbohyd Polym Technol Appl. 2023;6:100337. doi: 10.1016/j.carpta.2023.100337.
  • Adegoke KA, Adesina OO, Okon-Akan OA, et al. Sawdust-biomass based materials for sequestration of organic/inorganic pollutants and potential for engineering applications. Curr Res Green Sustain Chem. 2022;5:100274. doi: 10.1016/j.crgsc.2022.100274.
  • Chikri R, Elhadiri N, Benchanaa M, et al. Efficiency of sawdust as low-cost adsorbent for dyes removal. J Chem. 2020;2020:1–17. doi: 10.1155/2020/8813420.
  • Emenike EC, Adeleke J, Iwuozor KO, et al. Adsorption of crude oil from aqueous solution: a review. J Water Process Eng. 2022;50:103330. doi: 10.1016/j.jwpe.2022.103330.
  • Adeniyi AG, Adeyanju CA, Iwuozor KO, et al. Retort carbonization of bamboo (Bambusa vulgaris) waste for thermal energy recovery. Clean Techn Environ Policy. 2023;25(3):937–947. doi: 10.1007/s10098-022-02415-w.
  • Safaat M, Wulan PPDK. Technoeconomic analysis of integrated bioethanol from elephant grass (Pennisetum purpureum) with utilization of its residue and lignin. Industria. 2022;11(1):64–80. doi: 10.21776/ub.industria.2022.011.01.7.
  • Iwuozor KO, Emenike EC, Stephen AA, et al. Thermochemical recycling of waste disposable facemasks in a non-electrically powered system. Low-Carbon Mater Green Constr. 2023;1(1):12. doi: 10.1007/s44242-023-00010-w.
  • Emenike EC, Iwuozor KO, Agbana SA, et al. Efficient recycling of disposable face masks via co-carbonization with waste biomass: a pathway to a cleaner environment. Clean Environ Syst. 2022;6:100094. doi: 10.1016/j.cesys.2022.100094.
  • Adeniyi AG, Amusa VT, Iwuozor KO, et al. Thermal recycling strategy of Coca-Cola PVC label films by its co-carbonization with Terminalia ivorensis leaves. Clean Eng Technol. 2022;11:100564. doi: 10.1016/j.clet.2022.100564.
  • Schmidt HP, Kammann C, Hagemann N, et al. Biochar in agriculture–a systematic review of 26 global meta‐analyses. GCB Bioenergy. 2021;13(11):1708–1730. doi: 10.1111/gcbb.12889.
  • Bai SH, Omidvar N, Gallart M, et al. Combined effects of biochar and fertilizer applications on yield: a review and meta-analysis. Sci Total Environ. 2022;808:152073. doi: 10.1016/j.scitotenv.2021.152073.
  • Jazie AA, Haydary J, Abed SA, et al. Hydrothermal liquefaction of Fucus vesiculosus algae catalyzed by Hβ zeolite catalyst for biocrude oil production. Algal Res. 2022;61:102596. doi: 10.1016/j.algal.2021.102596.
  • Emenike EC, Ogunniyi S, Ighalo JO, et al. Delonix regia biochar potential in removing phenol from industrial wastewater. Bioresour Technol Rep. 2022;19:101195. doi: 10.1016/j.biteb.2022.101195.
  • Ighalo JO, Ogunniyi S, Adeniyi AG, et al. Competitive adsorption of heavy metals in a quaternary solution by sugarcane bagasse–LDPE hybrid biochar: equilibrium isotherm and kinetics modelling. Chem Prod Process Model. 2023;18(2):231–246. doi: 10.1515/cppm-2021-0056.
  • Adeniyi AG, Iwuozor KO, Muritala KB, et al. Conversion of biomass to biochar using top‐lit updraft technology: a review. Biofuels Bioprod Bioref. 2023;17(5):1411–1424. doi: 10.1002/bbb.2497.
  • Yuan Y, Zhang N, Hu X. Effects of wet and dry ball milling on the physicochemical properties of sawdust derived-biochar. Instrum Sci Technol. 2020;48(3):287–300. doi: 10.1080/10739149.2019.1708751.
  • Adeboye B, Adewole B, Adedoja A, et al. Optimization and modeling of process parameters on the yield of enhanced pyrolysis oil during co-pyrolysis of cassava peel with polystyrene. Environ Chall. 2021;5:100347. doi: 10.1016/j.envc.2021.100347.
  • Adeniyi AG, Abdulkareem SA, Adeyanju CA, et al. Recovery of metallic oxide rich biochar from waste chicken feather. Low-Carbon Mater Green Constr. 2023;1(1):7. doi: 10.1007/s44242-022-00002-2.
  • Lin J, Zhang Q, Xia H, et al. Effect of pyrolysis temperature on pyrolysis of pine saw dust and application of bio-char. Int J Environ Sci Technol. 2022;19(3):1977–1984. doi: 10.1007/s13762-021-03159-8.
  • Cheng L, Wu Z, Zhang Z, et al. Tar elimination from biomass gasification syngas with bauxite residue derived catalysts and gasification char. Appl Energy. 2020;258:114088. doi: 10.1016/j.apenergy.2019.114088.
  • Zheng Q, Morimoto M, Takanohashi T. Production of carbonaceous microspheres from wood sawdust by a novel hydrothermal carbonization and extraction method. RSC Adv. 2017;7(67):42123–42128. doi: 10.1039/C7RA07847A.
  • Odeyemi SO, Iwuozor KO, Emenike EC, et al. Valorization of waste cassava peel into biochar: an alternative to electrically-powered process. Total Environ Res Themes. 2023;6:100029. doi: 10.1016/j.totert.2023.100029.
  • Emenike EC, Adeniyi AG, Omuku PE, et al. Recent advances in nano-adsorbents for the sequestration of copper from water. J Water Process Eng. 2022;47:102715. doi: 10.1016/j.jwpe.2022.102715.
  • Hakiki DN, Maulani TR. Characteristics of nata De taro from “beneng” taro starch waste with addition of various types of carbon and isolated soy protein. Industria. 2020;9(1):11–16. doi: 10.21776/ub.industria.2020.009.01.2.
  • Iwuozor KO, Emenike EC, Omonayin EO, et al. Unlocking the hidden value of pods: a review of thermochemical conversion processes for biochar production. Bioresour Technol Rep. 2023;22:101488. doi: 10.1016/j.biteb.2023.101488.
  • Song B, Manu M, Li D, et al. Food waste digestate composting: feedstock optimization with sawdust and mature compost. Bioresour Technol. 2021;341:125759. doi: 10.1016/j.biortech.2021.125759.
  • Zou S, Li H, Wang S, et al. Experimental research on an innovative sawdust biomass-based insulation material for buildings. J Cleaner Prod. 2020;260:121029. doi: 10.1016/j.jclepro.2020.121029.
  • Soni B, Karmee SK. Towards a continuous pilot scale pyrolysis based biorefinery for production of biooil and biochar from sawdust. Fuel. 2020;271:117570. doi: 10.1016/j.fuel.2020.117570.
  • Krylova A, Krysanova K, Kulikova M, et al. Non-catalytic dissolution of biochar obtained by hydrothermal carbonization of sawdust in hydrogen donor solvent. Energies. 2021;14(18):5890. doi: 10.3390/en14185890.
  • Li J, Zhao P, Li T, et al. Pyrolysis behavior of hydrochar from hydrothermal carbonization of pinewood sawdust. J Anal Appl Pyrolysis. 2020;146:104771. doi: 10.1016/j.jaap.2020.104771.
  • Li Y, Meas A, Shan S, et al. Hydrochars from bamboo sawdust through acid assisted and two-stage hydrothermal carbonization for removal of two organics from aqueous solution. Bioresour Technol. 2018;261:257–264. doi: 10.1016/j.biortech.2018.03.108.
  • Guiotoku M, Rambo C, Hansel F, et al. Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Mater Lett. 2009;63(30):2707–2709. doi: 10.1016/j.matlet.2009.09.049.
  • Li H, Wang S, Yuan X, et al. The effects of temperature and color value on hydrochars’ properties in hydrothermal carbonization. Bioresour Technol. 2018;249:574–581. doi: 10.1016/j.biortech.2017.10.046.
  • Heidari M, Salaudeen S, Dutta A, et al. Effects of process water recycling and particle sizes on hydrothermal carbonization of biomass. Energy Fuels. 2018;32(11):11576–11586. doi: 10.1021/acs.energyfuels.8b02684.
  • Maniscalco MP, Volpe M, Messineo A. Hydrothermal carbonization as a valuable tool for energy and environmental applications: a review. Energies. 2020;13(16):4098. doi: 10.3390/en13164098.
  • Adeniyi AG, Amusa VT, Emenike EC, et al. Hybrid biochar production from biomass and pigmented plastic for sustainable waste-to-energy. Emerg Mater. 2023:1–10. doi: 10.1007/s42247-023-00538-4.
  • Emenike EC, Iwuozor KO, Okwu KC, et al. Composition and morphology of biomass-based soot from updraft gasifier system. J Renew Sustain Energy. 2023;15(4):1–9. doi: 10.1063/5.0154780.
  • Adeniyi AG, Abdulkareem SA, Iwuozor KO, et al. Effect of salt impregnation on the properties of orange albedo biochar. Clean Chem Eng. 2022;3:100059. doi: 10.1016/j.clce.2022.100059.
  • Solarte-Toro JC, González-Aguirre JA, Giraldo JAP, et al. Thermochemical processing of woody biomass: a review focused on energy-driven applications and catalytic upgrading. Renew Sustain Energy Rev. 2021;136:110376. doi: 10.1016/j.rser.2020.110376.
  • Trada A, Chaudhary A, Patel D, et al. An alternative fuel production from sawdust through batch-type pyrolysis reactor: fuel properties and thermodynamic analysis. Process Saf Environ Protec. 2022;167:332–342. doi: 10.1016/j.psep.2022.09.023.
  • Chang G, Huang Y, Xie J, et al. The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust. Energy Convers Manage. 2016;124:587–597. doi: 10.1016/j.enconman.2016.07.038.
  • Saravanakumar A, Vijayakumar P, Hoang AT, et al. Thermochemical conversion of large-size woody biomass for carbon neutrality: principles, applications, and issues. Bioresour Technol. 2023;370:128562. doi: 10.1016/j.biortech.2022.128562.
  • Shah NAA, Mansor A, Manikam RVS. Systematic review on characterization of tannase from agricultural by-products. Industria. 2023;12(1):1–14.
  • Ulusal A, Apaydın Varol E, Bruckman VJ, et al. Opportunity for sustainable biomass valorization to produce biochar for improving soil characteristics. Biomass Conv Bioref. 2021;11(3):1041–1051. doi: 10.1007/s13399-020-00923-7.
  • Ali L, Ahmed Baloch K, Palamanit A, et al. Physicochemical characterisation and the prospects of biofuel production from rubberwood sawdust and sewage sludge. Sustainability. 2021;13(11):5942. doi: 10.3390/su13115942.
  • Adeniyi AG, Iwuozor KO, Emenike EC, et al. One-step chemical activation for the production of engineered orange peel biochar. Emerg Mater. 2023;6(1):211–221. doi: 10.1007/s42247-022-00442-3.
  • Iwuozor KO, Ighalo JO, Emenike EC, et al. Adsorption of methyl orange: a review on adsorbent performance. Curr Res Green Sustain Chem. 2021;4:100179. doi: 10.1016/j.crgsc.2021.100179.
  • Azizah N, Suhartini S, Nurika I. Optimization of vanillin extraction from biodegradation of oil palm empty fruit bunches by Serpula lacrymans. Industria. 2021;10(1):33–40. doi: 10.21776/ub.industria.2021.010.01.4.
  • Iwuozor KO, Emenike EC, Ighalo JO, et al. Review on the thermochemical conversion of sugarcane bagasse into biochar. Clean Mater. 2022;6:100162. doi: 10.1016/j.clema.2022.100162.
  • Ahmad M, Rajapaksha AU, Lim JE, et al. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere. 2014;99:19–33. doi: 10.1016/j.chemosphere.2013.10.071.
  • Ronsse F, Van Hecke S, Dickinson D, et al. Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB Bioenergy. 2013;5(2):104–115. doi: 10.1111/gcbb.12018.
  • Ighalo JO, Conradie J, Ohoro CR, et al. Biochar from coconut residues: an overview of production, properties, and applications. Ind Crops Prod. 2023;204:117300. doi: 10.1016/j.indcrop.2023.117300.
  • Enam RN, Tahir M, Hasan Rizvi H, et al. A sustainable way to generate energy through biomass flash pyrolysis in South Asia: a green energy technology. IJEEP. 2022;12(5):274–279. doi: 10.32479/ijeep.13335.
  • Barquilha CE, Braga MC. Adsorption of organic and inorganic pollutants onto biochars: challenges, operating conditions, and mechanisms. Bioresour Technol Rep. 2021;15:100728. doi: 10.1016/j.biteb.2021.100728.
  • Gabhane JW, Bhange VP, Patil PD, et al. Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Appl Sci. 2020;2(7):1–21. doi: 10.1007/s42452-020-3121-5.
  • Mishra RK, Misra M, Mohanty AK. Value-added bio-carbon production through the slow pyrolysis of waste bio-oil: fundamental studies on their structure–property–processing co-relation. ACS Omega. 2022;7(2):1612–1627. doi: 10.1021/acsomega.1c01743.
  • Ighalo JO, Iwuchukwu FU, Eyankware OE, et al. Flash pyrolysis of biomass: a review of recent advances. Clean Techn Environ Policy. 2022;24(8):2349–2363. doi: 10.1007/s10098-022-02339-5.
  • Correa CR, Hehr T, Voglhuber-Slavinsky A, et al. Pyrolysis vs. hydrothermal carbonization: understanding the effect of biomass structural components and inorganic compounds on the char properties. J Anal Appl Pyrolysis. 2019;140:137–147. doi: 10.1016/j.jaap.2019.03.007.
  • Oni BA, Oziegbe O, Olawole OO. Significance of biochar application to the environment and economy. Ann Agric Sci. 2019;64(2):222–236. doi: 10.1016/j.aoas.2019.12.006.
  • Rajasekhar Reddy B, Vinu R. Feedstock characterization for pyrolysis and gasification. In: Coal and biomass gasification: recent advances and future challenges. Singapore: Springer Nature; 2018. p. 3–36.
  • Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess. 2017;4(1):7. doi: 10.1186/s40643-017-0137-9.
  • Alizadeh P, Dumonceaux T, Tabil LG, et al. Steam explosion pre-treatment of sawdust for biofuel pellets. Clean Technol. 2022;4(4):1175–1192. doi: 10.3390/cleantechnol4040072.
  • Dai L, He C, Wang Y, et al. Hydrothermal pretreatment of bamboo sawdust using microwave irradiation. Bioresour Technol. 2018;247:234–241. doi: 10.1016/j.biortech.2017.08.104.
  • Sichone K, Lay MC, Leatherland C. Pilot-scale continuous pyrolysis of Pinus radiatta sawdust. New Zealand 2013 Biochar Workshop–the Final Answer?; 2013.
  • Varma AK, Thakur LS, Shankar R, et al. Pyrolysis of wood sawdust: effects of process parameters on products yield and characterization of products. Waste Manag. 2019;89:224–235. doi: 10.1016/j.wasman.2019.04.016.
  • Gupta GK, Gupta PK, Mondal MK. Experimental process parameters optimization and in-depth product characterizations for teak sawdust pyrolysis. Waste Manag. 2019;87:499–511. doi: 10.1016/j.wasman.2019.02.035.
  • Shaaban A, Se S-M, Mitan NMM, et al. Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Eng. 2013;68:365–371. doi: 10.1016/j.proeng.2013.12.193.
  • Moralı U, Yavuzel N, Şensöz S. Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: characterization of bio-oil and bio-char. Bioresour Technol. 2016;221:682–685. doi: 10.1016/j.biortech.2016.09.081.
  • Mazlan M, Uemura Y, Osman N, et al. Characterizations of bio-char from fast pyrolysis of meranti wood sawdust. J Phys Conf Ser. 2015;622:012054. doi: 10.1088/1742-6596/622/1/012054.
  • Gu X, Ma X, Li L, et al. Pyrolysis of poplar wood sawdust by TG-FTIR and Py–GC/MS. J Anal Appl Pyrolysis. 2013;102:16–23. doi: 10.1016/j.jaap.2013.04.009.
  • Chowdhury ZZ, Karim MZ, Ashraf MA, et al. Influence of carbonization temperature on physicochemical properties of biochar derived from slow pyrolysis of durian wood (Durio zibethinus) sawdust. BioResources. 2016;11(2):3356–3372. doi: 10.15376/biores.11.2.3356-3372.
  • Sookramoon K. Updraft Gasifier-Stirling engine biomass incineration system power generation. Trends Sci. 2022;19(3):2170–2170. doi: 10.48048/tis.2022.2170.
  • You S, Ok YS, Chen SS, et al. A critical review on sustainable biochar system through gasification: energy and environmental applications. Bioresour Technol. 2017;246:242–253. doi: 10.1016/j.biortech.2017.06.177.
  • Molino A, Chianese S, Musmarra D. Biomass gasification technology: the state of the art overview. J Energy Chem. 2016;25(1):10–25. doi: 10.1016/j.jechem.2015.11.005.
  • Trninić M, Stojiljković D, Manić N, et al. A mathematical model of biomass downdraft gasification with an integrated pyrolysis model. Fuel. 2020;265:116867. doi: 10.1016/j.fuel.2019.116867.
  • Sumanti DM, Hanidah I-I, Abdullatif MA. Physical, chemical, and functional characteristics of composite flours from banana corm and tempeh. Industria. 2022;11(2):139–150. doi: 10.21776/ub.industria.2022.011.02.5.
  • Sansaniwal S, Rosen M, Tyagi S. Global challenges in the sustainable development of biomass gasification: an overview. Renew Sustain Energy Rev. 2017;80:23–43. doi: 10.1016/j.rser.2017.05.215.
  • Moneti M, Di Carlo A, Bocci E, et al. Influence of the main gasifier parameters on a real system for hydrogen production from biomass. Int J Hydrogen Energy. 2016;41(28):11965–11973. doi: 10.1016/j.ijhydene.2016.05.171.
  • Ahmad J, Patuzzi F, Rashid U, et al. Exploring untapped effect of process conditions on biochar characteristics and applications. Environ Technol Innov. 2021;21:101310. doi: 10.1016/j.eti.2020.101310.
  • Zhang Y, Cui Y, Chen P, et al. Gasification technologies and their energy potentials. In: Sustainable resource recovery and zero waste approaches. St. Louis: Elsevier; 2019. p. 193–206.
  • Ismail TM, Abd El-Salam M. Parametric studies on biomass gasification process on updraft gasifier high temperature air gasification. Appl Therm Eng. 2017;112:1460–1473. doi: 10.1016/j.applthermaleng.2016.10.026.
  • Feng D, Zhang Y, Zhao Y, et al. Mechanism of in-situ dynamic catalysis and selective deactivation of H2O-activated biochar for biomass tar reforming. Fuel. 2020;279:118450. doi: 10.1016/j.fuel.2020.118450.
  • Pacioni TR, Soares D, Di Domenico M, et al. Kinetic modeling of CO2 gasification of biochars prepared from Brazilian agro-industrial residues: effect of biomass indigenous mineral content. Biomass Conv Bioref. 2023;13(8):6675–6688. doi: 10.1007/s13399-021-01671-y.
  • Vamvuka D, Chatzifotiadis I. Energy recovery from solid waste materials via a two-step gasification process by steam. Eur J Energy Res. 2022;2(2):20–24. doi: 10.24018/ejenergy.2022.2.2.51.
  • Van Lanh N, Bich NH, Hung BN, et al. Effect of the air-flow on the production of syngas, tar and biochar using rice husk and sawdust as feedstock in an updraft gasifier stove. Livest Res Rural Dev. 2016;28:5.
  • Madzaki H, KarimGhani WAWA. Carbon dioxide adsorption on sawdust biochar. Procedia Eng. 2016;148:718–725. doi: 10.1016/j.proeng.2016.06.591.
  • Zhang J, Jiang P, Gao F, et al. Fuel gas production and char upgrading by catalytic CO2 gasification of pine sawdust char. Fuel. 2020;280:118686. doi: 10.1016/j.fuel.2020.118686.
  • Taba LE, Irfan MF, Daud WAMW, et al. The effect of temperature on various parameters in coal, biomass and CO-gasification: a review. Renew Sustain Energy Rev. 2012;16(8):5584–5596. doi: 10.1016/j.rser.2012.06.015.
  • Zhang J, Li X, Xie W, et al. Handy synthesis of robust Ni/carbon catalysts for methane decomposition by selective gasification of pine sawdust. Int J Hydrogen Energy. 2018;43(42):19414–19419. doi: 10.1016/j.ijhydene.2018.08.207.
  • Zhuang X, Zhan H, Song Y, et al. Structure-reactivity relationships of biowaste-derived hydrochar on subsequent pyrolysis and gasification performance. Energy Convers Manage. 2019;199:112014. doi: 10.1016/j.enconman.2019.112014.
  • Ighalo JO, Rangabhashiyam S, Dulta K, et al. Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants. Chem Eng Res Des. 2022;184:419–456. doi: 10.1016/j.cherd.2022.06.028.
  • Wang C, Zhang S, Wu S, et al. Multi-purpose production with valorization of wood vinegar and briquette fuels from wood sawdust by hydrothermal process. Fuel. 2020;282:118775. doi: 10.1016/j.fuel.2020.118775.
  • Wang T, Zhai Y, Zhu Y, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev. 2018;90:223–247. doi: 10.1016/j.rser.2018.03.071.
  • Nizamuddin S, Baloch HA, Griffin GJ, et al. An overview of effect of process parameters on hydrothermal carbonization of biomass. Renew Sustain Energy Rev. 2017;73:1289–1299. doi: 10.1016/j.rser.2016.12.122.
  • Zhang X, Zhang L, Li A. Eucalyptus sawdust derived biochar generated by combining the hydrothermal carbonization and low concentration KOH modification for hexavalent chromium removal. J Environ Manage. 2018;206:989–998. doi: 10.1016/j.jenvman.2017.11.079.
  • Krysanova K, Krylova A, Kulikova M, et al. Biochar characteristics produced via hydrothermal carbonization and torrefaction of peat and sawdust. Fuel. 2022;328:125220. doi: 10.1016/j.fuel.2022.125220.
  • Choi Y-K, Choi T-R, Gurav R, et al. Adsorption behavior of tetracycline onto spirulina sp.(microalgae)-derived biochars produced at different temperatures. Sci Total Environ. 2020;710:136282. doi: 10.1016/j.scitotenv.2019.136282.
  • Vlaskin M, Vladimirov G. Hydrothermal carbonization of organic components from municipal solid waste. Theor Found Chem Eng. 2018;52(6):996–1003. doi: 10.1134/S0040579518050421.
  • Simonic M, Goricanec D, Urbancl D. Impact of torrefaction on biomass properties depending on temperature and operation time. Sci Total Environ. 2020;740:140086. doi: 10.1016/j.scitotenv.2020.140086.
  • Tumuluru JS, Ghiasi B, Soelberg NR, et al. Biomass torrefaction process, product properties, reactor types, and moving bed reactor design concepts. Front Energy Res. 2021;9:728140. doi: 10.3389/fenrg.2021.728140.
  • Niu Y, Lv Y, Lei Y, et al. Biomass torrefaction: properties, applications, challenges, and economy. Renew Sustain Energy Rev. 2019;115:109395. doi: 10.1016/j.rser.2019.109395.
  • Surono UB, Saptoadi H, Rohmat TA. Improving thermochemical and physical properties of cocoa pod shell by torrefaction and its potential utilization. Int Energy J. 2020;20(2):141–154.
  • Leng L-J, Yuan X-Z, Huang H-J, et al. Characterization and application of bio-chars from liquefaction of microalgae, lignocellulosic biomass and sewage sludge. Fuel Process Technol. 2015;129:8–14. doi: 10.1016/j.fuproc.2014.08.016.
  • Darmawan A, Hambali M, Salam AR. Evaluation on moisture content of Eucheuma cottonii seaweed variety using statistical quality control approach. Industria. 2020;9(2):99–108. doi: 10.21776/ub.industria.2020.009.02.3.
  • Wild M, Calderón C. Torrefied biomass and where is the sector currently standing in terms of research, technology development, and implementation. Front Energy Res. 2021;9:678492. doi: 10.3389/fenrg.2021.678492.
  • Adeniyi AG, Iwuozor KO, Emenike EC, et al. Thermochemical co-conversion of biomass-plastic waste to biochar: a review. Green Chem Eng. 2023. doi: 10.1016/j.gce.2023.03.002.
  • Alizadeh P, Tabil LG, Adapa PK, et al. Torrefaction and densification of wood sawdust for bioenergy applications. Fuels. 2022;3(1):152–175. doi: 10.3390/fuels3010010.
  • Putri WDR, Riyanto EI, Heliana A, et al. Optimization of Microwave-Assisted extraction (MAE) time and material to solvent ratio of gembili (Dioscorea esculenta) water-soluble polysaccharides (WSP). Industria. 2021;10(1):78–98. doi: 10.21776/ub.industria.2021.010.01.9.
  • Gent S, Twedt M, Gerometta C, et al. Theoretical and applied aspects of biomass torrefaction: for biofuels and value-added products. Singapore: Butterworth-Heinemann; 2017.
  • Fajobi M, Lasode O, Adeleke A, et al. Investigation of physicochemical characteristics of selected lignocellulose biomass. Sci Rep. 2022;12(1):2918. doi: 10.1038/s41598-022-07061-2.
  • Lee J-W, Kim Y-H, Lee S-M, et al. Torrefaction characteristics of wood chip for the production of high energy density wood pellet. Korean Chem Eng Res. 2012;50(2):385–389. doi: 10.9713/kcer.2012.50.2.385.
  • Lunguleasa A, Ayrilmis N, Spirchez C, et al. Increasing the calorific properties of sawdust waste from pellets by torrefaction. Bioresources. 2019;14(4):7821–7839. doi: 10.15376/biores.14.4.7821-7839.
  • Shao J, Cheng W, Zhu Y, et al. Effects of combined torrefaction and pelletization on particulate matter emission from biomass pellet combustion. Energy Fuels. 2019;33(9):8777–8785. doi: 10.1021/acs.energyfuels.9b01920.
  • Siyal AA, Liu Y, Mao X, et al. Characterization and quality analysis of wood pellets: effect of pelletization and torrefaction process variables on quality of pellets. Biomass Conv Bioref. 2021;11(5):2201–2217. doi: 10.1007/s13399-020-01235-6.
  • Eseyin AE, Steele PH, Pittman CU Jr. Current trends in the production and applications of torrefied wood/biomass–a review. Bioresources. 2015;10(4):8812–8858. doi: 10.15376/biores.10.4.8812-8858.
  • Sarvaramini A, Assima GP, Larachi F. Dry torrefaction of biomass–torrefied products and torrefaction kinetics using the distributed activation energy model. Chem Eng J. 2013;229:498–507. doi: 10.1016/j.cej.2013.06.056.
  • Acharya B, Dutta A, Minaret J. Review on comparative study of dry and wet torrefaction. Sustain Energy Technol Assess. 2015;12:26–37. doi: 10.1016/j.seta.2015.08.003.
  • He C, Tang C, Li C, et al. Wet torrefaction of biomass for high quality solid fuel production: a review. Renew Sustain Energy Rev. 2018;91:259–271. doi: 10.1016/j.rser.2018.03.097.
  • Khairy M, Amer M, Ibrahim M, et al. The influence of torrefaction on the biochar characteristics produced from sesame stalks and bean husk. Biomass Conv Bioref. 2023:1–22. doi: 10.1007/s13399-023-03822-9.
  • Yang W, Wu S, Wang H, et al. Effect of wet and dry torrefaction process on fuel properties of solid fuels derived from bamboo and Japanese cedar. Bioresources. 2017;12(4):8629–8640. doi: 10.15376/biores.12.4.8629-8640.
  • Okoro N-J, Ozonoh M, Harding KG, et al. Potentials of torrefied pine sawdust as a renewable source of fuel for pyro-gasification: Nigerian and South African perspective. ACS Omega. 2021;6(5):3508–3516. doi: 10.1021/acsomega.0c04580.
  • Wang L, Riva L, Skreiberg Ø, et al. Effect of torrefaction on properties of pellets produced from woody biomass. Energy Fuels. 2020;34(12):15343–15354. doi: 10.1021/acs.energyfuels.0c02671.
  • Wang Z, Lim CJ, Grace JR. A comprehensive study of sawdust torrefaction in a dual-compartment slot-rectangular spouted bed reactor. Energy. 2019;189:116306. doi: 10.1016/j.energy.2019.116306.
  • Wang C, Peng J, Li H, et al. Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour Technol. 2013;127:318–325. doi: 10.1016/j.biortech.2012.09.092.
  • Li H, Liu X, Legros R, et al. Torrefaction of sawdust in a fluidized bed reactor. Bioresour Technol. 2012;103(1):453–458. doi: 10.1016/j.biortech.2011.10.009.
  • Gong C, Huang J, Feng C, et al. Effects and mechanism of ball milling on torrefaction of pine sawdust. Bioresour Technol. 2016;214:242–247. doi: 10.1016/j.biortech.2016.04.062.
  • Dirgantara M, Cahyana B, Suastika K, Akbar AR. Effect of temperature and residence time torrefaction palm kernel shell on the calorific value and energy yield. J Phys Conf Ser. 2020;1428(1):012010. doi: 10.1088/1742-6596/1428/1/012010.
  • Ozonoh M, Oboirien B, Daramola M. Optimization of process variables during torrefaction of coal/biomass/waste tyre blends: application of artificial neural network & response surface methodology. Biomass Bioenergy. 2020;143:105808. doi: 10.1016/j.biombioe.2020.105808.
  • Sukardi S, Pranowo D, Safitri P. Modelling of pulsed electric field (PEF) pretreatment on fresh Moringa oleifera leaves extraction using response surface methodology (RSM). Industria. 2022;11(2):101–106. doi: 10.21776/ub.industria.2022.011.02.2.
  • Bates RB, Ghoniem AF. Biomass torrefaction: modeling of reaction thermochemistry. Bioresour Technol. 2013;134:331–340. doi: 10.1016/j.biortech.2013.01.158.
  • Xue J, Goldfarb JL. Enhanced devolatilization during torrefaction of blended biomass streams results in additive heating values and synergistic oxidation behavior of solid fuels. Energy. 2018;152:1–12. doi: 10.1016/j.energy.2018.03.037.
  • Ge S, Yek PNY, Cheng YW, et al. Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: a batch to continuous approach. Renew Sustain Energy Rev. 2021;135:110148. doi: 10.1016/j.rser.2020.110148.
  • Suresh A, Alagusundaram A, Kumar PS, et al. Microwave pyrolysis of coal, biomass and plastic waste: a review. Environ Chem Lett. 2021;19(5):3609–3629. doi: 10.1007/s10311-021-01245-4.
  • Putra PHM, Rozali S, Patah MFA, et al. A review of microwave pyrolysis as a sustainable plastic waste management technique. J Environ Manage. 2022;303:114240. doi: 10.1016/j.jenvman.2021.114240.
  • Wang X-H, Chen H-P, Ding X-J, et al. Properties of gas and char from microwave pyrolysis of pine sawdust. Bioresources. 2009;4(3):946–959. doi: 10.15376/biores.4.3.946-959.
  • Ponnusamy VK, Nagappan S, Bhosale RR, et al. Review on sustainable production of biochar through hydrothermal liquefaction: physico-chemical properties and applications. Bioresour Technol. 2020;310:123414. doi: 10.1016/j.biortech.2020.123414.
  • Khan N, Chowdhary P, Ahmad A, et al. Hydrothermal liquefaction of rice husk and cow dung in mixed-bed-rotating pyrolyzer and application of biochar for dye removal. Bioresour Technol. 2020;309:123294. doi: 10.1016/j.biortech.2020.123294.
  • Jadhav A, Ahmed I, Baloch A, et al. Utilization of oil palm fronds for bio-oil and bio-char production using hydrothermal liquefaction technology. Biomass Conv Bioref. 2021;11(5):1465–1473. doi: 10.1007/s13399-019-00517-y.
  • Okoro OV, Sun Z. The characterisation of biochar and biocrude products of the hydrothermal liquefaction of raw digestate biomass. Biomass Conv Bioref. 2021;11(6):2947–2961. doi: 10.1007/s13399-020-00672-7.
  • Xu Y-H, Li M-F. Hydrothermal liquefaction of lignocellulose for value-added products: mechanism, parameter and production application. Bioresour Technol. 2021;342:126035. doi: 10.1016/j.biortech.2021.126035.
  • Sanjaya E, Abbas A. Plasma gasification as an alternative energy-from-waste (EFW) technology for the circular economy: an environmental review. Resour Conserv Recycl. 2023;189:106730. doi: 10.1016/j.resconrec.2022.106730.
  • Oliveira M, Ramos A, Ismail TM, et al. A review on plasma gasification of solid residues: recent advances and developments. Energies. 2022;15(4):1475. doi: 10.3390/en15041475.
  • Kuo P-C, Illathukandy B, Wu W, et al. Plasma gasification performances of various raw and torrefied biomass materials using different gasifying agents. Bioresour Technol. 2020;314:123740. doi: 10.1016/j.biortech.2020.123740.
  • Cudjoe D, Wang H. Plasma gasification versus incineration of plastic waste: energy, economic and environmental analysis. Fuel Process Technol. 2022;237:107470. doi: 10.1016/j.fuproc.2022.107470.
  • Evaristo RB, Ferreira R, Rodrigues JP, et al. Multiparameter-analysis of CO2/steam-enhanced gasification and pyrolysis for syngas and biochar production from low-cost feedstock. Energy Convers Manage. 2021;12:100138. doi: 10.1016/j.ecmx.2021.100138.
  • Miliotti E, Casini D, Rosi L, et al. Lab-scale pyrolysis and hydrothermal carbonization of biomass digestate: characterization of solid products and compliance with biochar standards. Biomass Bioenergy. 2020;139:105593. doi: 10.1016/j.biombioe.2020.105593.
  • Dogu O, Pelucchi M, Van de Vijver R, et al. The chemistry of chemical recycling of solid plastic waste via pyrolysis and gasification: state-of-the-art, challenges, and future directions. Prog Energy Combust Sci. 2021;84:100901. doi: 10.1016/j.pecs.2020.100901.
  • Li H, Wang Y, Zhou N, et al. Applications of calcium oxide–based catalysts in biomass pyrolysis/gasification–a review. J Clean Prod. 2021;291:125826. doi: 10.1016/j.jclepro.2021.125826.
  • Obidike LI, Yoro KO. Effect of zeolitic nano-catalyst on biodiesel yield and biochar formation during the pyrolysis of tallow. Biofuels. 2022;13(6):683–692. doi: 10.1080/17597269.2021.1882718.
  • Zou R, Qian M, Wang C, et al. Biochar: from by-products of agro-industrial lignocellulosic waste to tailored carbon-based catalysts for biomass thermochemical conversions. Chem Eng J. 2022;441:135972. doi: 10.1016/j.cej.2022.135972.
  • Deng C, Kang X, Lin R, et al. Boosting biogas production from recalcitrant lignin-based feedstock by adding lignin-derived carbonaceous materials within the anaerobic digestion process. Energy. 2023;278:127819. doi: 10.1016/j.energy.2023.127819.
  • Buss W, Wurzer C, Manning DA, et al. Mineral-enriched biochar delivers enhanced nutrient recovery and carbon dioxide removal. Commun Earth Environ. 2022;3(1):67. doi: 10.1038/s43247-022-00394-w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.