64
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Antioxidative capacity evaluation of imine compounds as metal ions chelators and free radical scavengers in biodiesel

, , , &
Pages 461-470 | Received 28 Apr 2023, Accepted 07 Sep 2023, Published online: 23 Sep 2023

References

  • Sharma P, Biswas P, Tamrakar S, et al. Biofuel production, study & characterisation from macro-algae (Azolla pinnata). Brazilian J Sci. 2023;2:75–81.
  • Tanwar MD, Tanwar PK, Bhand Y, et al. Biofuels: production and properties as substitute fuels. Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations [Working Title]. IntechOpen; 2023. doi: 10.5772/intechopen.109073.
  • Taymaz ER, Uslu ME, Deniz I. Introduction to biomass to biofuels technologies. In: Shadangi KP, editor. Liquid biofuels: fundamentals, characterization, and applications. Wiley Online Library, 2021. p. 13–15.
  • Uğuz G, Çakmak A, Bento CS, et al. Experimental investigation of fuel properties and engine operation with natural and synthetic antioxidants added to biodiesel. Biofuels. 2023;14(4):405–420. doi: 10.1080/17597269.2022.2156049.
  • Guo F, Wu R, Baxter LL, et al. Models to predict kinetics of NOx reduction by chars as a function of coal rank. Energy Fuels. 2019;33(6):5498–5504. doi: 10.1021/acs.energyfuels.8b03655.
  • Tavares JR, Sthel MS, Mila V, et al. Detection of greenhouse gas precursors from ethanol powered vehicles in Brazil. Biomass Bioenergy. 2014;61:46–52. doi: 10.1016/j.biombioe.2013.11.013.
  • Hu Z, Xu Z, Ma Z, et al. Potential surface hydrologic responses to increases in greenhouse gas concentrations and land use and land cover changes. Int J Climatol. 2019;39(2):814–827. doi: 10.1002/joc.5844.
  • Datta A, Hossain A, Roy S. An overview on biofuels and their advantages and disadvantages. Asian J Chem. 2019;31(8):1851–1858. doi: 10.14233/ajchem.2019.22098.
  • Jose TK, Anand K. Effects of biodiesel composition on its long term storage stability. Fuel. 2016;177:190–196. doi: 10.1016/j.fuel.2016.03.007.
  • Liu W, Lu G, Yang G, et al. Improving oxidative stability of biodiesel by cis-trans isomerization of carbon-carbon double bonds in unsaturated fatty acid methyl esters. Fuel. 2019;242:133–139. doi: 10.1016/j.fuel.2018.12.132.
  • Oliveira FCC, Suarez PAZ, Santos WLPD. Biodiesel: possibilidades e desafios. Quím Nova Escola. 2008; 28:3–8.
  • César ADS, Conejero MA, Ribeiro ECB, et al. Competitiveness analysis of “social soybeans” in biodiesel production in Brazil. Renew Energy. 2019;133:1147–1157. doi: 10.1016/j.renene.2018.08.108.
  • Procházka P, Hönig V. Economic analysis of diesel-fuel replacement by crude palm oil in Indonesian power plants. Energies. 2018;11(3):504. doi: 10.3390/en11030504.
  • Kumar N. Oxidative stability of biodiesel: causes, effects and prevention. Fuel. 2017;190:328–350. doi: 10.1016/j.fuel.2016.11.001.
  • Rial RC, Merlo TC, Santos PHM, et al. Evaluation of oxidative stability of soybean methyl biodiesel using extract of cagaite leaves (Eugenia dysenterica DC.) as additive. Renew Energy. 2020;152:1079–1085. doi: 10.1016/j.renene.2020.01.121.
  • Cheng Y, Chen K, Chou T. Concurrent calcium peroxide pretreatment and wet storage of water hyacinth for fermentable sugar production. Bioresour Technol. 2015;176:267–272. doi: 10.1016/j.biortech.2014.11.016.
  • Fortunato MA, Labaume J, Cologon P, et al. Biofuel surrogate sxidation: insoluble deposits formation studied by small-angle x‑ray scattering and small angle neutron scattering. Energy Fuels. 2018;32(9):9559–9567. doi: 10.1021/acs.energyfuels.8b02055.
  • Fazal MA, Haseeb ASMA, Masjuki HH. Comparative corrosive characteristics of petroleum diesel and palm biodiesel for automotive materials. Fuel Process Technol. 2010;91(10):1308–1315. doi: 10.1016/j.fuproc.2010.04.016.
  • Sazzad BS, Fazal MA, Haseeb ASMA, et al. Retardation of oxidation and material degradation in biodiesel: a review. RSC Adv. 2016; 6(65):60244–60263. doi: 10.1039/C6RA10016C.
  • Erdmann M, Böhning M, Niebergall U. Physical and chemical effects of biodiesel storage on high-density polyethylene: evidence of co-oxidation. Polym Degrad Stab. 2019;161:139–149. doi: 10.1016/j.polymdegradstab.2019.01.018.
  • Lôbo IP, Ferreira SLC, Cruz RSD. Biodiesel: parâmetros de qualidade e métodos analíticos. Quím Nova. 2009;32(6):1596–1608. doi: 10.1590/S0100-40422009000600044.
  • Martins LF, Cubides-Román DC, Da Silveira VC, et al. Synthesis of new phenolic-schiff base and its application as antioxidant in soybean biodiesel and corrosion inhibitor in AISI 1020 carbon steel. J Braz Chem Soc. 2020;31(3):556–565. doi: 10.21577/0103-5053.20190217.
  • Hossain M, Sujan SMA, Jamal MS. Antioxidant effect on oxidation stability of blend fish oil biodiesel with vegetable oil biodiesel and petroleum diesel fuel. IJRED. 2013; 2(2):75–80. doi: 10.14710/ijred.2.2.75-80.
  • Silva ET, Spacino KR, Silva LRC, et al. Modelling of relative protection factor of antioxidants TBHQ, BHT and BHA in mixture with biodiesel. Acta Sci Technol. 2018;40(1):35108. doi: 10.4025/actascitechnol.v40i1.35108.
  • Sestili P, Guidarelli A, Dacha M, et al. Quercetin prevents DNA single strands breakage and cytotoxicity caused by tert-butylhydroperoxide: free radical scavenging versus iron chelating mechanism. Free Radic Biol Med. 1998;25(2):196–200. doi: 10.1016/s0891-5849(98)00040-9.
  • Tang H, Wang A, Salley SO, et al. The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. J Am Oil Chem Soc. 2008;85(4):373–382. doi: 10.1007/s11746-008-1208-z.
  • Da Silveira VC, Ramos KCCS, Martins LF, et al. Synthesis and evaluation of schiff base compounds as copper and nickel chelators and radical scavengers. Brazilian J Prod Eng. 2020;6:38–50.
  • Rocha JG, Mendonça ADM, Campos DAR, et al. Biodiesel synthesis: influence of alkaline catalysts in methanol-oil dispersion. J Braz Chem Soc. 2018; 30(2):342–349. doi: 10.21577/0103-5053.20180183.
  • Viswanathamurthi P, Dharmaraj N, Anuradha S, et al. Ruthenium (III) complexes with tetradentate schiff bases containing triphenylphosphine or triphenylarsine. Transition Metal Chem. 1998;23(4):337–341. doi: 10.1023/A:1006953224166.
  • Caldeira VF, Carvalho AFFD, Alencar Filho JMTD, et al. Chemistry and fatty acid profile of new fixed oils from two cenostigma species: different promising raw material for use in cosmetic emulsions. Ind Crops Prod. 2023;196:116451. doi: 10.1016/j.indcrop.2023.116451.
  • Oliveira CVKD, Santos RF, Siqueira JAC, et al. Chemical characterization of oil and biodiesel from four safflower genotypes. Indus Crops Prod. 2018;123:192–196. doi: 10.1016/j.indcrop.2018.06.035.
  • Cirlini M, Caligiani A, Palla G, et al. Stability studies of ozonized sunflower oil and enriched cosmetics with a dedicated peroxide value determination. Ozone: Sci Eng. 2012;34(4):293–299. doi: 10.1080/01919512.2012.692992.
  • Gimeno P, Bousquet C, Lassu N, et al. High-performance liquid chromatography method for the determination of hydrogen peroxide present or released in teeth bleaching kits and hair cosmetic products. J Pharm Biomed Anal. 2015;107(790):386–393. doi: 10.1016/j.jpba.2015.01.018.
  • Jayaraman J, Alagu K, Jayprakash Raorane C, et al. Zinc oxide nanoparticles to the synthesis of high-value added biofuels from waste cooking oil methyl ester blends. Fuel. 2023;332(P2):126170. doi: 10.1016/j.fuel.2022.126170.
  • Zhang N, Li Y, Wen S, et al. Analytical methods for determining the peroxide value of edible oils: a mini-review. Food Chem. 2021;358:129834. doi: 10.1016/j.foodchem.2021.129834.
  • Chintagunta AD, Kumar NSS, Kolla J, et al. In silico optimization of anthocyanin extraction from gladious flower extracts and evaluation of its antioxidant potential. Biomass Conv Bioref. 2022. doi: 10.1007/s13399-022-03653-0.
  • Eldiehy KSH, Daimary N, Borah D, et al. Biodiesel production from Chlorella homosphaera by two-step catalytic conversion using waste radish leaves as a source for heterogeneous catalyst. Appl Biochem Biotechnol. 2023;195(7):4347–4367. doi: 10.1007/s12010-023-04312-4.
  • Borsato D, Maia ECR, Henrique L, et al. Cinética da oxidação de biodiesel de óleo de soja em mistura com TBHQ: determinação do tempo de estocagem. Quím Nova. 2012;35(4):733–737. doi: 10.1590/S0100-40422012000400015.
  • Guo Q, Wu M, Wang K, et al. Catalytic hydrodeoxygenation of algae bio-oil over bimetallic Ni-Cu/ZrO2 catalysts. Ind Eng Chem Res. 2015;54(3):890–899. doi: 10.1021/ie5042935.
  • Bridgwater AV. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy. 2012;38:68–94. doi: 10.1016/j.biombioe.2011.01.048.
  • Santos MF, Silva VGS, Nogueira CM, et al. New Cooper-Cystein complexes: synthesis, toxicity and antioxidant analysis for soybean oil. Int J Modern Res Eng Technol. 2019; 4(12):24–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.