121
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Biodiesel production from waste cooking oil using KOH/HY-type nano-catalyst derived from silica sand

, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 527-543 | Received 13 Jul 2023, Accepted 03 Oct 2023, Published online: 19 Oct 2023

References

  • Ejaz A, Babar H, Ali HM, et al. Concentrated photovoltaics as light harvesters: outlook, recent progress, and challenges. Sustainable Energy Technol Assess. 2021;46:101199. doi:10.1016/j.seta.2021.101199.
  • Hoang AT, Ong HC, Fattah IMR, et al. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Process Technol. 2021;223:106997. doi:10.1016/j.fuproc.2021.106997.
  • Patel A, Sharma AK, Rova U, et al.. Chapter 3 - in-depth analysis of waste cooking oil as renewable and ecofriendly biofuel candidate. In: Hussain CM, Singh S, Goswami L, editors. Waste-to-Energy approaches towards zero waste. Netherlands: Elsevier Science; 2022. p. 87–103.
  • Encinar JM, Sánchez N, Martínez G, et al. Study of biodiesel production from animal fats with high free fatty acid content. Bioresour Technol. 2011;102(23):10907–10914. doi:10.1016/j.biortech.2011.09.068.
  • Koh MY, Ghazi TIM. A review of biodiesel production from jatropha curcas L. oil. Renewable Sustainable Energy Rev. 2011;15(5):2240–2251. doi:10.1016/j.rser.2011.02.013.
  • Meng X, Chen G, Wang Y. Biodiesel production from waste cooking oil via alkali catalyst and its engine test. Fuel Process Technol. 2008;89(9):851–857. doi:10.1016/j.fuproc.2008.02.006.
  • Bhatti HN, Hanif MA, Qasim M, Ata ur R. Biodiesel production from waste tallow. Fuel 2008;87(13–14): 2961–2966. doi:10.1016/j.fuel.2008.04.016.
  • Gürü M, Koca A, Can Ö, et al. Biodiesel production from waste chicken fat based sources and evaluation with Mg based additive in a diesel engine. Renewable Energy. 2010;35(3):637–643. doi:10.1016/j.renene.2009.08.011.
  • Sharma A, Melo JS, Prakash R, et al. Lab-scale production of biodiesel from soybean acid oil using immobilized whole cells as catalyst. Biocatal Biotransform. 2021;39(6):443–454. doi:10.1080/10242422.2021.1964486.
  • Joshi G, Rawat DS, Sharma AK, et al. Microwave enhanced alcoholysis of non-edible (algal, jatropha and pongamia) oils using chemically activated egg shell derived CaO as heterogeneous catalyst. Bioresour Technol. 2016;219:487–492. doi:10.1016/j.biortech.2016.08.011.
  • Al-Humairi ST, Lee JG, Salihu M, Harvey AP. Biodiesel production through acid catalyst in situ reactive extraction of chlorella vulgaris foamate. Energies 2022;15(12):4482.
  • Khounani Z, Abdul Razak NN, Hosseinzadeh-Bandbafha H, et al. Assessing the environmental impacts of furfural production in a poplar wood biorefinery: a study on the role of mannitol concentration and catalyst type. Ind Crops Prod. 2023;203:117230. doi:10.1016/j.indcrop.2023.117230.
  • Veza I, Afzal A, Mujtaba MA, et al. Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine. Alexandria Eng J. 2022;61(11):8363–8391. doi:10.1016/j.aej.2022.01.072.
  • Ogunsola AD, Durowoju MO, Ogunkunle O, et al. Shea butter oil biodiesel synthesized using snail shell heterogeneous catalyst: performance and environmental impact analysis in diesel engine applications. Sustainability. 2023;15(11):8913. doi:10.3390/su15118913.
  • Oloyede CT, Jekayinfa SO, Alade AO, et al. Synthesis of biobased composite heterogeneous catalyst for biodiesel production using simplex lattice design mixture: optimization process by Taguchi method. Energies. 2023;16(5):2197. doi:10.3390/en16052197.
  • Fattah IMR, Ong HC, Mahlia TMI, et al. State of the art of catalysts for biodiesel production. Front Energy Res. 2020;8(101). doi:10.3389/fenrg.2020.00101.
  • Al-Humairi ST, Lee JGM, Harvey AP. Direct and rapid production of biodiesel from algae foamate using a homogeneous base catalyst as part of an intensified process. Energy Convers Manag. 2022;16:100284.
  • Wilson K, Lee AF, Dacquin J-P. Heterogeneous catalysts for converting renewable feedstocks to fuels and chemicals. In: Guczi L, Erdôhelyi A, editors. Catalysis for alternative energy generation. New York (NY): Springer New York; 2012. p. 263–304.
  • Al-Jammal N, Al-Hamamre Z, Alnaief M. Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil. Renewable Energy. 2016;93:449–459. doi:10.1016/j.renene.2016.03.018.
  • Xu B, Rotunno F, Bordiga S, et al. Reversibility of structural collapse in zeolite Y: alkane cracking and characterization. J Catal. 2006;241(1):66–73. doi:10.1016/j.jcat.2006.04.009.
  • Lee AF, Bennett JA, Manayil JC, et al. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev. 2014;43(22):7887–7916. doi:10.1039/c4cs00189c.
  • Semwal S, Arora AK, Badoni RP, et al. Biodiesel production using heterogeneous catalysts. Bioresour Technol. 2011;102(3):2151–2161. doi:10.1016/j.biortech.2010.10.080.
  • Querol X, Moreno N, Umaña JC, et al. Synthesis of zeolites from coal fly ash: an overview. Int J Coal Geol. 2002;50(1–4):413–423. doi:10.1016/S0166-5162(02)00124-6.
  • Tosheva L, Brockbank A, Mihailova B, et al. Micron- and nanosized FAU-type zeolites from fly ash for antibacterial applications. J Mater Chem. 2012;22(33):16897–16905. doi:10.1039/c2jm33180b.
  • Abbas AS, Abbas RN. Preparation and characterization of nay zeolite for biodiesel production. Iraqi J Chem Pet Eng. 2015;16(2):19–29. doi:10.31699/IJCPE.2015.2.3.
  • Belviso C, Cavalcante F, Lettino A, et al. A and X-type zeolites synthesised from kaolinite at low temperature. Appl Clay Sci. 2013;80–81:162–168. doi:10.1016/j.clay.2013.02.003.
  • Doyle AM, Albayati TM, Abbas AS, et al. Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin. Renewable Energy. 2016;97:19–23. doi:10.1016/j.renene.2016.05.067.
  • Belviso C, Giannossa LC, Huertas FJ, et al. Synthesis of zeolites at low temperatures in fly ash-kaolinite mixtures. Microporous Mesoporous Mater. 2015;212:35–47. doi:10.1016/j.micromeso.2015.03.012.
  • Doyle AM, Alismaeel ZT, Albayati TM, et al. High purity FAU-type zeolite catalysts from shale rock for biodiesel production. Fuel. 2017;199:394–402. doi:10.1016/j.fuel.2017.02.098.
  • Todkar BS, Deorukhkar OA, Deshmukh SM. Extraction of silica from rice husk. Int J Eng Res Dev. 2016;12(3):69–74.
  • Megawati, D. S. Fardhyanti, R. D. Artanti Putri, O. Fianti, A. F. Simalango and A. E. Akhir. Synthesis of silica powder from sugar cane bagasse ash and its application as adsorbent in adsorptive-distillation of ethanol-water solution. In: MATEC web of conferences. Vol. 237; 2018, p. 02002. doi:10.1051/matecconf/201823702002.
  • Morales-Paredes CA, Rodríguez-Linzán I, Saquete MD, et al. Silica-derived materials from agro-industrial waste biomass: characterization and comparative studies. Environ Res. 2023;231(Pt 1):116002. doi:10.1016/j.envres.2023.116002.
  • Bakar RA, Yahya R, Gan SN. Production of high purity amorphous silica from rice husk. Procedia Chem. 2016;19:189–195. doi:10.1016/j.proche.2016.03.092.
  • Anuar MF, Fen YW, Zaid MHM, et al. Synthesis and structural properties of coconut husk as potential silica source. Results Phys. 2018;11:1–4. doi:10.1016/j.rinp.2018.08.018.
  • Eddy DR, Puri FN, Noviyanti AR. Synthesis and photocatalytic activity of silica-based sand quartz as the supporting TiO2 photocatalyst. Procedia Chem. 2015;17:55–58. doi:10.1016/j.proche.2015.12.132.
  • Cheng Y, Xia M, Luo F, et al. Effect of surface modification on physical properties of silica aerogels derived from fly ash acid sludge. Colloids Surf, A. 2016;490:200–206. doi:10.1016/j.colsurfa.2015.11.055.
  • Yang X, Ma J, Ling J, et al. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation. Appl Surf Sci. 2018;435:609–616. doi:10.1016/j.apsusc.2017.11.123.
  • Ferahtia A, Halilat MT, Mimeche F, et al. Surface water quality assessment in Semi-Arid region (El honda watershed, Algeria) based on water quality index (WQI). Studia UBB Chemia. 2021;66(1):127–142. doi:10.24193/subbchem.2021.01.10.
  • Zhang X, Lu M, Idrus MAM, et al. Performance of precipitation and electrocoagulation as pretreatment of silica removal in brackish water and seawater. Process Saf Environ Prot. 2019;126:18–24. doi:10.1016/j.psep.2019.03.024.
  • Ishmah SN, Permana MD, Firdaus ML, et al. Extraction of silica from Bengkulu beach sand using alkali fusion method. Pendipa Jurnal Pendik Sains. 2020;4(2):1–5. doi:10.33369/pendipa.4.2.1-5.
  • Gustafsson H, Holmberg K. Emulsion-based synthesis of porous silica. Adv Colloid Interface Sci. 2017;247:426–434. doi:10.1016/j.cis.2017.03.002.
  • Meier M, Ungerer J, Klinge M, et al. Synthesis of nanometric silica particles via a modified stöber synthesis route. Colloids Surf, A. 2018;538:559–564. doi:10.1016/j.colsurfa.2017.11.047.
  • Ghani U, Hussain S, Ali A, et al. Hydrothermal extraction of amorphous silica from locally available slate. ACS Omega. 2022;7(7):6113–6120. doi:10.1021/acsomega.1c06553.
  • Azlina HN, Hasnidawani JN, Norita H, et al. Synthesis of SiO2 nanostructures using Sol-Gel method. Acta Phys Pol A. 2016;129(4):842–844. doi:10.12693/APhysPolA.129.842.
  • Mahdi AM. Preparation of the nano crystalline powder from iraqi sand using the sol-gel technology. Asian J Appl Sci. 2018;6(3):131–134. doi:10.24203/ajas.v6i3.5256.
  • Izzati HN, F, Nisak M. Sintesis dan karaktterisasi kekristalan nanosilika berbasis pasir bancar. Jurnal Inovasi Fisika Indonesia. 2013;2(3):19–22.
  • Falk G, Shinhe GP, Teixeira LB, et al. Synthesis of silica nanoparticles from sugarcane bagasse ash and nano-silicon via magnesiothermic reactions. Ceram Int. 2019;45(17):21618–21624. doi:10.1016/j.ceramint.2019.07.157.
  • Ramos MJ, Casas A, Rodríguez L, et al. Transesterification of sunflower oil over zeolites using different metal loading: a case of leaching and agglomeration studies. Appl Catal, A. 2008;346(1–2):79–85. doi:10.1016/j.apcata.2008.05.008.
  • Suppes GJ, Dasari MA, Doskocil EJ, et al. Transesterification of soybean oil with zeolite and metal catalysts. Appl Catal, A. 2004;257(2):213–223. doi:10.1016/j.apcata.2003.07.010.
  • Shu Q, Yang B, Yuan H, et al. Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+. Catal Commun. 2007;8(12):2159–2165. doi:10.1016/j.catcom.2007.04.028.
  • Kusuma RI, Hadinoto JP, Ayucitra A, et al. Natural zeolite from pacitan Indonesia, as catalyst support for transesterification of palm oil. Appl Clay Sci. 2013;74:121–126. doi:10.1016/j.clay.2012.04.021.
  • Dias JM, Alvim-Ferraz MCM, Almeida MF. Comparison of the performance of different homogeneous alkali catalysts during transesterification of waste and virgin oils and evaluation of biodiesel quality. Fuel. 2008;87(17–18):3572–3578. doi:10.1016/j.fuel.2008.06.014.
  • Soares Dias AP, Puna J, Neiva Correia MJ, et al. Effect of the oil acidity on the methanolysis performances of lime catalyst biodiesel from waste frying oils (WFO). Fuel Process Technol. 2013;116:94–100. doi:10.1016/j.fuproc.2013.05.002.
  • SadeghHassani S, Rashidi A, Adinehnia M, et al. Facile and economic method for preparation of nano- colloidal silica with controlled size and stability. Int J Nano Dimension. 2014;5(2):177–185.
  • Cundy CS, Cox PA. The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater. 2005;82(1–2):1–78. doi:10.1016/j.micromeso.2005.02.016.
  • Meynen V, Cool P, Vansant EF. Verified syntheses of mesoporous materials. Microporous Mesoporous Mater. 2009;125(3):170–223. doi:10.1016/j.micromeso.2009.03.046.
  • Al-Zaidi BYS. The effect of modification techniques on the performance of zeolite-Y catalysts in hydrocarbon cracking reactions [doctor of philosophy]. Manchester: The University of Manchester; 2011.
  • Balat M. Biodiesel fuel production from vegetable oils via supercritical ethanol transesterification. Energy Sources Part A. 2008;30(5):429–440. doi:10.1080/15567030600826531.
  • Lotero E, Liu Y, Lopez DE, et al. Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res. 2005;44(14):5353–5363. doi:10.1021/ie049157g.
  • Al-Hamamre Z, Foerster S, Hartmann F, et al. Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel. 2012;96:70–76. doi:10.1016/j.fuel.2012.01.023.
  • Sharma A, Melo JS, Tejo Prakash N, et al. Fuel properties of blend and biodiesel generated from acid oil using whole cell biocatalyst. Energy Sources Part A. 2018;40(2):148–154. doi:10.1080/15567036.2017.1406562.
  • Musić S, Filipović-Vinceković N, Sekovanić L. Precipitation of amorphous SiO2 particles and their properties. Braz J Chem Eng. 2011;28(1):89–94. doi:10.1590/S0104-66322011000100011.
  • Al-Zaidi BYS. Analysis the surface morphology of the porous media by using atomic force microscope technique. Al-Khwarizmi Eng J. 2018;13(4):98–110. doi:10.22153/kej.2017.07.007.
  • Baerlocher C, McCusker LB, Olson DH. Atlas of zeolite framework types. Netherlands: Elsevier B.V; 2007.
  • Treacy MMJ, Higgins JB. Collection of simulated XRD powder patterns for zeolites. Netherlands: Elsevier Science; 2007.
  • Masoudian SK, Sadighi S, Abbasi A. Synthesis and characterization of high aluminum zeolite X from technical grade materials. Bull Chem React Eng Catal. 2013;8(1):54–60. doi:10.9767/bcrec.8.1.4321.54-60.
  • Hana AM, Surchi KM. Comparison the properties of zeolite NaY synthesized by different procedures. Am Int J Res Sci Technol Eng Math. 2014;8(1):22–29.
  • Souza MJB, Silva AOS, Fernandes VJ, Jr., et al. Catalytic cracking of C5+ gasoline over HY zeolite. React Kinet Catal Lett. 2003;79(2):257–262. doi:10.1023/A:1024530017369.
  • MacLeod CS, Harvey AP, Lee AF, et al. Evaluation of the activity and stability of alkali-doped metal oxide catalysts for application to an intensified method of biodiesel production. Chem Eng J. 2008;135(1–2):63–70. doi:10.1016/j.cej.2007.04.014.
  • Alonso DM, Mariscal R, Moreno-Tost R, et al. Potassium leaching during triglyceride transesterification using K/γ-Al2O3 catalysts. Catal Commun. 2007;8(12):2074–2080. doi:10.1016/j.catcom.2007.04.003.
  • Man Kim J, Ryoo R. Synthesis of MCM-48 single crystals. Chem Commun. 1998;1(2):259–260. doi:10.1039/a707677k.
  • Sadeghbeigi R. Fluid catalytic cracking handbook: an expert guide to the practical operation, design, and optimization of FCC units. Netherlands: Elsevier Science; 2020.
  • de Peña YP, Rondón W. Linde type a zeolite and type Y faujasite as a Solid-Phase for lead, cadmium, nickel and cobalt preconcentration and determination using a flow injection system coupled to flame atomic absorption spectrometry. Am J Anal Chem. 2013;04(08):387–397. doi:10.4236/ajac.2013.48049.
  • Meher LC, Vidya Sagar D, Naik SN. Technical aspects of biodiesel production by transesterification—a review. Renewable Sustainable Energy Rev. 2006;10(3):248–268. doi:10.1016/j.rser.2004.09.002.
  • Fogler HS. Elements of chemical reaction engineering, Global Edition. Germany: Pearson Education; 2022.
  • Ayoob AK, Fadhil AB. Biodiesel production through transesterification of a mixture of non-edible oils over lithium supported on activated carbon derived from scrap tires. Energy Convers Manage. 2019;201:112149. doi:10.1016/j.enconman.2019.112149.
  • Lu P, Yuan Z, Li L, et al. Biodiesel from different oil using fixed-bed and plug-flow reactors. Renewable Energy. 2010;35(1):283–287. doi:10.1016/j.renene.2009.07.011.
  • Uzun BB, Kılıç M, Özbay N, et al. Biodiesel production from waste frying oils: optimization of reaction parameters and determination of fuel properties. Energy. 2012;44(1):347–351. doi:10.1016/j.energy.2012.06.024.
  • Daramola MO, Mtshali K, Senokoane L, et al. Influence of operating variables on the transesterification of waste cooking oil to biodiesel over sodium silicate catalyst: a statistical approach. J Taibah Univ Sci. 2016;10(5):675–684. doi:10.1016/j.jtusci.2015.07.008.
  • Kouzu M, Kasuno T, Tajika M, et al. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel. 2008;87(12):2798–2806. doi:10.1016/j.fuel.2007.10.019.
  • Ogunkunle O, Oniya OO, Adebayo AO. Yield response of biodiesel production from heterogeneous and homogeneous catalysis of milk bush seed (Thevetia peruviana) oil. Energy Policy Res. 2017;4(1):21–28. doi:10.1080/23815639.2017.1319772.
  • Sharma AK, Sharma PK, Chintala V, et al. Environment-Friendly biodiesel/diesel blends for improving the exhaust emission and engine performance to reduce the pollutants emitted from transportation fleets. Int J Environ Res Public Health. 2020;17(11):3896. doi:10.3390/ijerph17113896.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.