57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Potential of thermophilic bacteria isolated from cow dung-grass compost for bioethanol production using floral waste

, &
Pages 635-643 | Received 13 Jun 2023, Accepted 18 Oct 2023, Published online: 30 Oct 2023

References

  • Liu H, Kumar V, Jia L, et al. Biopolymer poly-hydroxyalkanoates (PHA) production from apple industrial waste residues: a review. Chemosphere. 2021;284:131427. doi: 10.1016/j.chemosphere.2021.131427.
  • Aditiya HB, Mahlia TMI, Chong WT, et al. Second generation bioethanol production: a critical review. Renew Sustain Energy Rev. 2016;66:631–653. doi: 10.1016/j.rser.2016.07.015.
  • OECD-FAO. Agricultural Outlook 2021-2030. OECD; 2021.
  • Balat M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag. 2011;52(2):858–875. doi: 10.1016/j.enconman.2010.08.013.
  • Kalogo Y, Habibi S, MacLean HL, et al. Environmental implications of municipal solid waste-derived ethanol. Environ Sci Technol. 2007;41(1):35–41. doi: 10.1021/es061117b.
  • Kucharska K, Rybarczyk P, Hołowacz I, et al. Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules. 2018;23(11):2937. doi: 10.3390/molecules23112937.
  • Hasunuma T, Kondo A. Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochemistry. 2012;47(9):1287–1294. doi: 10.1016/j.procbio.2012.05.004.
  • Sizova MV, Izquierdo JA, Panikov NS, et al. Cellulose- and xylan-degrading thermophilic anaerobic bacteria from biocompost. Appl Environ Microbiol. 2011;77(7):2282–2291. doi: 10.1128/AEM.01219-10.
  • Bashir Z, Sheng L, Anil A, et al. Engineering Geobacillus thermoglucosidasius for direct utilisation of holocellulose from wheat straw. Biotechnol Biofuels. 2019;12(1):199. doi: 10.1186/s13068-019-1540-6.
  • Dhiman SS, David A, Shrestha N, et al. Simultaneous hydrolysis and fermentation of unprocessed food waste into ethanol using thermophilic anaerobic bacteria. Bioresour Technol. 2017;244(Pt 1):733–740. doi: 10.1016/j.biortech.2017.07.102.
  • Almarsdottir AR, Sigurbjornsdottir MA, Orlygsson J. Effect of various factors on ethanol yields from lignocellulosic biomass by thermoanaerobacterium AK17. Biotechnol Bioeng. 2012;109(3):686–694. doi: 10.1002/bit.24346.
  • Brynjarsdottir H, Wawiernia B, Orlygsson J. Ethanol production from sugars and complex biomass by thermoanaerobacter AK5: the effect of electron-scavenging systems on end-product formation. Energy Fuels. 2012;26(7):4568–4574. doi: 10.1021/ef300754q.
  • Bacon LF, Hamley-Bennett C, Danson MJ, et al. Development of an efficient technique for gene deletion and allelic exchange in geobacillus spp. Microb Cell Fact. 2017;16(1):58. doi: 10.1186/s12934-017-0670-4.
  • Júnia S, René K, Ulisses N da R, et al. Draft genome sequence of geobacillus sp. Strain LEMMJ02, a thermophile isolated from deception island, an active volcano in Antarctica. Microbiol Resour Announc. 2019;8(42):e00920–19.
  • Wissuwa J, Stokke R, Fedøy A-E, et al. Isolation and complete genome sequence of the Thermophilic geobacillus sp. 12AMOR1 from an arctic deep-sea hydrothermal vent site. Stand Genomic Sci. 2016;11(1):16.
  • Logan NA. The genus Geobacillus BT - the prokaryotes: firmicutes and tenericutes. Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F, editors. Springer Berlin Heidelberg, Berlin, Heidelberg, 133–147. 2014.
  • Novik G, Savich V, Olga M. Geobacillus bacteria: potential commercial applications in industry, bioremediation, and bioenergy production. In: Mishra M, editor Growing and handling of bacterial cultures. Rijeka: IntechOpen; 2018. Chapter 1.
  • Aslam M, Rashid N. Chapter 18 - Bioenergy production in extremophiles. In: Kuddus MBT-ME, editor Microbial extremozymes novel sources and industrial applications. London, UK: Academic Press; 2022. p. 231–246.
  • Dutta S, Kumar MS. Potential of value-added chemicals extracted from floral waste: a review. J Clean Prod . 2021;294:126280. doi: 10.1016/j.jclepro.2021.126280.
  • Sharma D, Yadav KD, Kumar S. Role of sawdust and cow dung on compost maturity during rotary drum composting of flower waste. Bioresour Technol. 2018;264:285–289. doi: 10.1016/j.biortech.2018.05.091.
  • Dutta S, Kumar MS. Characterization of floral waste as potential candidates for compost and biofuel production. Biomass Conv Bioref. 2022. doi: 10.1007/s13399-022-02353-z.
  • Frank JA, Reich CI, Sharma S, et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol. 2008;74(8):2461–2470. doi: 10.1128/AEM.02272-07.
  • Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111–120. doi: 10.1007/BF01731581.
  • Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783–791. doi: 10.2307/2408678.
  • Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549. doi: 10.1093/molbev/msy096.
  • Doetsch RN. Determinative methods of light microscopy. American Society for Microbiology, Washington; 1981.
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426–428. doi: 10.1021/ac60147a030.
  • Borshchevskaya LN, Gordeeva TL, Kalinina AN, et al. Spectrophotometric determination of lactic acid. J Anal Chem. 2016;71(8):755–758. doi: 10.1134/S1061934816080037.
  • Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol. 1994;44(4):846–849. doi: 10.1099/00207713-44-4-846.
  • Bibra M, Rathinam NK, Johnson GR, et al. Single pot biovalorization of food waste to ethanol by Geobacillus and Thermoanaerobacter spp. Renew Energy. 2020;155:1032–1041. doi: 10.1016/j.renene.2020.02.093.
  • Lin PP, Rabe KS, Takasumi JL, et al. Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metab Eng. 2014;24:1–8. doi: 10.1016/j.ymben.2014.03.006.
  • Kr K, Neelagund S. Novel Geobacillus thermoleovorans KNG 112 thermophilic bacteria from bandaru hot spring: a potential producer of thermostable enzymes. Asian J Pharm Clin Res. 2019;13(1):134–141., doi: 10.22159/ajpcr.2020.v13i1.36008.
  • Gandhi S, Salleh AB, Rahman R, et al. Expression and characterization of Geobacillus stearothermophilus SR74 recombinant α-Amylase in Pichia pastoris. Biomed Res Int. 2015;2015(2015):529059. doi: 10.1155/2015/529059.
  • Rozanov AS, Ivanisenko TV, Bryanskaya AV, et al. Bioinformatics analysis of the genome of Geobacillus stearothermophilus 22 strain isolated from the garga hot spring, baikal region. Russ J Genet Appl Res. 2014;4(4):267–272. doi: 10.1134/S207905971404011X.
  • Fong JCN, Svenson CJ, Nakasugi K, et al. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost. Extremophiles. 2006;10(5):363–372. doi: 10.1007/s00792-006-0507-2.
  • Danner H, Neureiter M, Madzingaidzo L, et al. Bacillus stearothermophilus for thermophilic production of L-lactic acid. Appl Biochem Biotechnol. 1998;70-72:895–903. doi: 10.1007/BF02920200.
  • Singh N, Puri M, Tuli DK, et al. Bioethanol production by a xylan fermenting thermophilic isolate clostridium strain DBT-IOC-DC21. Anaerobe. 2018;51:89–98. doi: 10.1016/j.anaerobe.2018.04.014.
  • Singh N, Puri M, Tuli DK, et al. Bioethanol production potential of a novel thermophilic isolate thermoanaerobacter sp. DBT-IOC-X2 isolated from chumathang hot spring. Biomass Bioenergy. 2018;116:122–130. doi: 10.1016/j.biombioe.2018.05.009.
  • Scully SM. Progress in second generation ethanol production with thermophilic bacteria. In: Basso TP, Carlos L, editors. Fuel ethanol production from sugarcane. Rijeka: IntechOpen; 2018. Chapter 6.
  • San Martin R, Bushell D, Leak DJ, et al. Development of a synthetic medium for continuous anaerobic growth and ethanol production with a lactate dehydrogenase mutant of Bacillus stearothermophilus. J Gen Microbiol. 1992;138(5):987–996. doi: 10.1099/00221287-138-5-987.
  • Matsushika A, Inoue H, Kodaki T, et al. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol. 2009;84(1):37–53. doi: 10.1007/s00253-009-2101-x.
  • Baskaran S, Ahn H-J, Lynd LR. Investigation of the ethanol tolerance of Clostridium thermosaccharolyticum in continuous culture. Biotechnol Prog. 1995;11(3):276–281. doi: 10.1021/bp00033a006.
  • Herrero AA, Gomez RF. Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature. Appl Environ Microbiol. 1980;40(3):571–577. doi: 10.1128/aem.40.3.571-577.1980.
  • Shaw AJ, Miller BB, Rogers SR, et al. Anaerobic detoxification of acetic acid in a thermophilic ethanologen. Biotechnol Biofuels. 2015;8(1):75. doi: 10.1186/s13068-015-0257-4.
  • He Q, Lokken PM, Chen S, et al. Characterization of the impact of acetate and lactate on ethanolic fermentation by Thermoanaerobacter ethanolicus. Bioresour Technol. 2009;100(23):5955–5965. doi: 10.1016/j.biortech.2009.06.084.
  • Ren N, Cao G, Wang A, et al. Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrogen Energy. 2008;33(21):6124–6132. doi: 10.1016/j.ijhydene.2008.07.107.
  • Singh N, Mathur AS, Gupta RP, et al. Consolidated bioprocessing at high temperature. In: Singhania RR, Agarwal RA, Kumar RP, Sukumaran RK, editors. Waste to wealth. Singapore: Springer Singapore; 2018. p. 457–476.
  • Raita M, Ibenegbu C, Champreda V, et al. Biomass and bioenergy production of ethanol by thermophilic oligosaccharide utilising Geobacillus thermoglucosidasius TM242 using palm kernel cake as a renewable feedstock. Biomass Bioenergy. 2016;95:45–54. doi: 10.1016/j.biombioe.2016.08.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.