217
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Bio-electricity production in a single-chamber microbial fuel cell using urine as a substrate

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 665-675 | Received 27 Jul 2023, Accepted 27 Oct 2023, Published online: 09 Nov 2023

References

  • Freguia S, Logrieco ME, Monetti J, et al. Self-powered bioelectrochemical nutrient recovery for fertilizer generation from human urine. Sustainability. 2019;11(19):5490. doi: 10.3390/su11195490.
  • Salar-Garcia MJ, Obata O, Kurt H, et al. Impact of inoculum type on the microbial community and power performance of urine-fed microbial fuel cells. Microorganisms. 2020;8(12):1921. doi: 10.3390/microorganisms8121921.
  • Heinrichmeier J, Littfinski T, Vasyukova E, et al. On-site performance evaluation of a 1,000-litre microbial fuel cell system using submergible multi-electrode modules with air-cathodes for sustainable municipal wastewater treatment and electricity generation. Water Sci Technol. 2023;87(8):1969–1981. doi: 10.2166/wst.2023.106.
  • Jabbar N, Alardhi S, Al-Jadir TM, et al. Contaminants removal from real refinery wastewater associated with energy generation in microbial fuel cell. J Ecol Eng. 2023;24(1):107–114. doi: 10.12911/22998993/156081.
  • Sato C, Paucar NE, Chiu S, et al. Single-chamber microbial fuel cell with multiple plates of bamboo charcoal anode: performance evaluation. Processes. 2021;9(12):2194. doi: 10.3390/pr9122194.
  • Paucar NE, Sato C. Coupling microbial fuel cell and hydroponic system for electricity generation, organic removal, and nutrient recovery via plant production from wastewater. Energies. 2022;15(23):9211. doi: 10.3390/en15239211.
  • Magotra VK, Kang TW, Kim DY, et al. Urea fuel cell using cow dung compost soil as a novel biocatalyst for power generation applications. Energy. 2022;239:122357. doi: 10.1016/j.energy.2021.122357.
  • Yaqoob AA, Al-Zaqri N, Alamzeb M, et al. Bioenergy generation and phenol degradation through microbial fuel cells energized by domestic organic waste. Molecules. 2023;28(11):4349. doi: 10.3390/molecules28114349.
  • Xu X, Zhao Q, Wu M, et al. Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe(III) oxide addition. Bioresour Technol. 2017;225:402–408. doi: 10.1016/j.biortech.2016.11.126.
  • Logan BE, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology†. Environ Sci Technol. 2006;40(17):5181–5192. doi: 10.1021/es0605016.
  • Rusyn I. Role of microbial community and plant species in performance of plant microbial fuel cells. Renew Sustain Energy Rev. 2021;152:111697. doi: 10.1016/j.rser.2021.111697.
  • Finkelstein DA, Tender LM, Zeikus JG. Effect of electrode potential on electrode-reducing microbiota. Environ Sci Technol. 2006;40(22):6990–6995. doi: 10.1021/es061146m.
  • Liang H, Han J, Yang X, et al. Performance improvement of microbial fuel cells through assembling anodes modified with nanoscale materials. Nanomater Nanotechnol. 2022;12:184798042211329. doi: 10.1177/18479804221132965.
  • Cid CA, Stinchcombe A, Ieropoulos I, et al. Urine microbial fuel cells in a semi-controlled environment for onsite urine pre-treatment and electricity production. J Power Sources. 2018;400:441–448. doi: 10.1016/j.jpowsour.2018.08.051.
  • Sabin JM, Leverenz H, Bischel HN. Microbial fuel cell treatment energy-offset for fertilizer production from human urine. Chemosphere. 2022;294:133594. doi: 10.1016/j.chemosphere.2022.133594.
  • Arkin A, Li Z, Zhou X. Enhanced power generation with disordered porous carbon-modified foam iron–nickel anode in human urine-driven microbial fuel cell. Electochim Acta. 2023;143378. doi: 10.1016/j.electacta.2023.143378.
  • Zhao G, Ma F, Wei L, et al. Electricity generation from cattle dung using microbial fuel cell technology during anaerobic acidogenesis and the development of microbial populations. Waste Manag. 2012;32(9):1651–1658. doi: 10.1016/j.wasman.2012.04.013.
  • Kaur G, Brar YS, Kaur J, et al. Management of cattle dung and novel bioelectricity generation using microbial fuel cells: an ingenious experimental approach. Int J Chem Eng. 2021;2021:1–10. doi: 10.1155/2021/5536221.
  • Santoro C, Winfield J, Theodosiou P, et al. Supercapacitive paper based microbial fuel cell: high current/power production within a low cost design. Bioresour Technol Rep. 2019;7:100297. doi: 10.1016/j.biteb.2019.100297.
  • Santoro C, Garcia MJS, Walter XA, et al. Urine in bioelectrochemical systems: an overall review. ChemElectroChem. 2020;7(6):1312–1331. doi: 10.1002/celc.201901995.
  • Apollon W, Vidales-Contreras JA, Rodríguez-Fuentes H, et al. Livestock’s urine-based plant microbial fuel cells improve plant growth and power generation. Energies. 2022a;15(19):6985. doi: 10.3390/en15196985.
  • Apollon W, Luna-Maldonado AI, Kamaraj SK, et al. Self-sustainable nutrient recovery associated to power generation from livestock’s urine using plant-based bio-batteries. Fuel. 2023;332:126252. doi: 10.1016/j.fuel.2022.126252.
  • Kamaraj SK, Rivera AE, Murugesan S, et al. Electricity generation from nopal biogas effluent using a surface modified clay cup (cantarito) microbial fuel cell. Heliyon. 2019;5(4):e01506. doi: 10.1016/j.heliyon.2019.e01506.
  • Zhang GR, Shen LL, Schmatz P, et al. Cathodic activated stainless steel mesh as a highly active electrocatalyst for the oxygen evolution reaction with self-healing possibility. J Energy Chem. 2020;49:153–160. doi: 10.1016/j.jechem.2020.01.025.
  • Clauwaert P, Van der Ha D, Boon N, et al. Open air biocathode enables effective electricity generation with microbial fuel cells. Environ Sci Technol. 2007;41(21):7564–7569. doi: 10.1021/es0709831.
  • Dunaj SJ, Vallino JJ, Hines ME, et al. Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells. Environ Sci Technol. 2012;46(3):1914–1922. doi: 10.1021/es2032532.
  • Tapia NF, Rojas C, Bonilla CA, et al. Evaluation of sedum as driver for plant microbial fuel cells in a semi-arid green roof ecosystem. Ecol Eng. 2017;108:203–210. doi: 10.1016/j.ecoleng.2017.08.017.
  • Tamura K, Stecher G, Kumar S. MEGA 11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022–3027. doi: 10.1093/molbev/msab120.
  • Logroño W, Pérez M, Urquizo G, et al. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: a preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater. Chemosphere. 2017;176:378–388. doi: 10.1016/j.chemosphere.2017.02.099.
  • Logan BE, Wallack MJ, Kim K-Y, et al. Assessment of microbial fuel cell configurations and power densities. Environ Sci Technol Lett. 2015;2(8):206–214. doi: 10.1021/acs.estlett.5b00180.
  • Hiegemann H, Herzer D, Nettmann E, et al. An integrated 45L pilot microbial fuel cell system at a full-scale wastewater treatment plant. Bioresour Technol. 2016;218:115–122. doi: 10.1016/j.biortech.2016.06.052.
  • Ahmed SM, Rozaik E, Abdelhalim H. Performance of single-chamber microbial fuel cells using different carbohydrate-rich wastewaters and different inocula. Pol J Environ Stud. 2016;25(2):503–510. doi: 10.15244/pjoes/61115.
  • Sonawane JM, Mahadevan R, Pandey A, et al. Recent progress in microbial fuel cells using substrates from diverse sources. Heliyon. 2022;8(12):e12353. doi: 10.1016/j.heliyon.2022.e12353.
  • Salar-Garcia MJ, Montilla F, Quijada C, et al. Improving the power performance of urine-fed microbial fuel cells using PEDOT-PSS modified anodes. Appl Energy. 2020;278:115528. doi: 10.1016/j.apenergy.2020.115528.
  • Halim MA, Ibrahim M, Molla MR, et al. Cows urine is a prominent source of electrolyte for microbial fuel cell. In: 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology. 2019 May 03–05, Dhaka, Bangladesh. New York: IEEE; 2019. p. 1–4. doi: 10.1109/ICASERT.2019.8934537.
  • Jadhav DA, Pandit S, Sonawane JM, et al. Effect of membrane biofouling on the performance of microbial electrochemical cells and mitigation strategies. Bioresour Technol Rep. 2021;15:100822. doi: 10.1016/j.biteb.2021.100822.
  • Gajda I, You J, Santoro C, et al. A new method for urine electrofiltration and long term power enhancement using surface modified anodes with activated carbon in ceramic microbial fuel cells. Electrochim Acta. 2020;353:136388. doi: 10.1016/j.electacta.2020.136388.
  • Walter XA, Stinchcombe A, Greenman J, et al. Urine transduction to usable energy: a modular MFC approach for smartphone and remote system charging. Appl Energy. 2017;192:575–581. doi: 10.1016/j.apenergy.2016.06.006.
  • Walter XA, Merino-Jiménez I, Greenman J, et al. PEE POWER® urinal II – urinal scale-up with microbial fuel cell scale-down for improved lighting. J Power Sources. 2018;392:150–158. doi: 10.1016/j.jpowsour.2018.02.047.
  • Zhang Q, Liu L. Pave the way for successful treatment of nylon wastewater by performance enhancement via unit stacking scale up of dual cathodes up-flow microbial fuel cell and C/N adjustment with urea. J Environ Chem Eng. 2023;11(3):109930. doi: 10.1016/j.jece.2023.109930.
  • Hong SW, Chang IS, Choi YS, et al. Experimental evaluation of influential factors for electricity harvesting from sediment using microbial fuel cell. Bioresour Technol. 2009;100(12):3029–3035. doi: 10.1016/j.biortech.2009.01.030.
  • Patil SA, Harnisch F, Kapadnis B, et al. Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. Biosens Bioelectron. 2010;26(2):803–808. doi: 10.1016/j.bios.2010.06.019.
  • Rusyn IB, Hamkalo К. Use of Carex hirta in electro-biotechnological systems on green roofs. Regul Mech Biosyst. 2019;10(1):39–44. doi: 10.15421/02.
  • Tou I, Azri YM, Sadi MH, et al. Chlorophytum microbial fuel cell characterization. Int J Green Energy. 2019;16(12):947–959. doi: 10.1080/15435075.2019.1650049.
  • Rusyn IB, Hamkalo К. Electro-biosystems with mosses on green roofs. EREM. 2020;76(1):20–31. doi: 10.5755/j01.erem.76.1.22212.
  • Sharma P, Talekar GV, Mutnuri S. Demonstration of energy and nutrient recovery from urine by field-scale microbial fuel cell system. Process Biochem. 2021;101:89–98. doi: 10.1016/j.procbio.2020.11.014.
  • Ieropoulos IA, Greenman J, Melhuish C. Miniature microbial fuel cells and stacks for urine utilisation. Int J Hydrogen Energy. 2013;38(1):492–496. doi: 10.1016/j.ijhydene.2012.09.062.
  • Simeon MI, Asoiro FU, Aliyu M, et al. Polarization and power density trends of a soil‐based microbial fuel cell treated with human urine. Int J Energy Res. 2020;44(7):5968–5976. doi: 10.1002/er.5391.
  • Chumroen W, Pengchai P. Performance of synthetic urine-fed microbial fuel cell at various substrate concentrations and flow rates. Thai Environ Eng J. 2023;37(1):23–32.
  • Catal T, Kul A, Atalay VE, et al. Efficacy of microbial fuel cells for sensing of cocaine metabolites in urine-based wastewater. J Power Sources. 2019;414:1–7. doi: 10.1016/j.jpowsour.2018.12.078.
  • Ozdemir M, Enisoglu-Atalay V, Bermek H, et al. Removal of a cannabis metabolite from human urine in microbial fuel cells generating electricity. Bioresour Technol Rep. 2019;5:121–126. doi: 10.1016/j.biteb.2019.01.003.
  • Syed Z, Sonu K, Sogani M. Cattle manure management using microbial fuel cells for green energy generation. Biofuels Bioprod Bioref. 2022;16(2):460–470. doi: 10.1002/bbb.2293.
  • Zhu Q, Hu J, Liu B, et al. Recent advances on the development of functional materials in microbial fuel cells: from fundamentals to challenges and outlooks. Energy Environ Mater. 2022;5(2):401–426. doi: 10.1002/eem2.12173.
  • Wang Y, He C, Li W, et al. High power generation in mixed-culture microbial fuel cells with corncob-derived three-dimensional N-doped bioanodes and the impact of N dopant states. Chem Eng J. 2020;399:125848. doi: 10.1016/j.cej.2020.125848.
  • Xu F, Cao F, Kong Q, et al. Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chem Eng J. 2018;339:479–486. doi: 10.1016/j.cej.2018.02.003.
  • Ancona V, Caracciolo AB, Borello D, et al. Microbial fuel cell: an energy harvesting technique for environmental remediation. Int J Environ Impact. 2020;3(2):168–179. doi: 10.2495/EI-V3-N2-168-179.
  • Apollon W, Kamaraj SK, Silos-Espino H, et al. Impact of opuntia species plant bio-battery in a semi-arid environment: demonstration of their applications. Appl Energy. 2020;279:115788. doi: 10.1016/j.apenergy.2020.115788.
  • Najafgholi Z, Rahimnejad M, Najafpour G. Effect of electrolyte conductivity and aeration on performance of sediment microbial fuel cell. J Renew Energy Environ. 2015;2(1):43–48. doi: 10.30501/jree.2015.70064.
  • Aghababaie M, Farhadian M, Jeihanipour A, et al. Effective factors on the performance of microbial fuel cells in wastewater treatment–a review. Environ Technol Rev. 2015;4(1):71–89. doi: 10.1080/09593330.2015.1077896.
  • Lefebvre O, Tan Z, Kharkwal S, et al. Effect of increasing anodic NaCl concentration on microbial fuel cell performance. Bioresour Technol. 2012;112:336–340. doi: 10.1016/j.biortech.2012.02.048.
  • Behera M, Jana PS, More TT, et al. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochemistry. 2010;79(2):228–233. doi: 10.1016/j.bioelechem.2010.06.002.
  • Liu H, Cheng S, Logan BE. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ Sci Technol. 2005;39(14):5488–5493. doi: 10.1021/es050316c.
  • Apollon W, Valera-Montero LL, Perales-Segovia C, et al. Effect of ammonium nitrate on novel cactus pear genotypes aided by biobattery in a semi-arid ecosystem. Sustain Energy Technol Assess. 2022;49:101730. doi: 10.1016/j.seta.2021.101730.
  • Shafi J, Tian H, Ji M. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip. 2017;31(3):446–459. doi: 10.1080/13102818.2017.1286950.
  • Sun Y, Kokko M, Vassilev I. Anode-assisted electro-fermentation with Bacillus subtilis under oxygen-limited conditions. Biotechnol Biofuels Bioprod. 2023;16(1):6. doi: 10.1186/s13068-022-02253-4.
  • Thierry S, Macarie H, Iizuka T, et al. Pseudoxanthomonas mexicana sp. nov. and Pseudoxanthomonas japonensis sp. nov., isolated from diverse environments, and emended descriptions of the genus Pseudoxanthomonas Finkmann et al. 2000 and of its type species. Int J Syst Evol Microbiol. 2004;54(Pt 6):2245–2255. doi: 10.1099/ijs.0.02810-0.
  • Schwabe R, Dittrich C, Kadner J, et al. Secondary metabolites released by the rhizosphere bacteria Arthrobacter oxydans and Kocuria rosea enhance plant availability and soil-plant transfer of germanium (Ge) and rare earth elements (REEs). Chemosphere. 2021;285:131466. doi: 10.1016/j.chemosphere.2021.131466.
  • Picot M, Lapinsonnière L, Rothballer M, et al. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Biosens Bioelectron. 2011;28(1):181–188. doi: 10.1016/j.bios.2011.07.017.
  • Pillai S, Madhavan N, Sundaram AK. Smart and sustainable Urine-Powered microbial fuel cells Eco-Technology. In: Drück H, Mathur J, Panthalookaran V, Sreekumar V, editors. Green buildings and sustainable engineering. Springer transactions in civil and environmental engineering. Singapore: Springer; 2020. p. 431–440. doi: 10.1007/978-981-15-1063-2_36.
  • Sharma R, Kumari R, Pant D, et al. Bioelectricity generation from human urine and simultaneous nutrient recovery: role of microbial fuel cells. Chemosphere. 2022;292:133437. doi: 10.1016/j.chemosphere.2021.133437.
  • Kumar R, Singh L, Zularisam AW. Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew Sustain Energy Rev. 2016;56:1322–1336. doi: 10.1016/j.rser.2015.12.029.
  • Nawaz A, Ul Haq I, Qaisar K, et al. Microbial fuel cells: insight into simultaneous wastewater treatment and bioelectricity generation. Process Saf Environ Prot. 2022;161:357–373. doi: 10.1016/j.psep.2022.03.039.
  • Xie T, Ehrhardt L, Günther PM, et al. Current to biomass: media optimization and strain selection from cathode-associated microbial communities in a two-chamber electro-cultivation reactor. Environments. 2023;10(6):97. doi: 10.3390/environments10060097.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.