87
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Comparative assessment of biochar produced from LDPE and neem leaves using batch and semi-batch biomass fuel-based reactors

ORCID Icon, , , , &
Pages 677-687 | Received 31 Jul 2023, Accepted 04 Nov 2023, Published online: 10 Nov 2023

References

  • Bankole DT, Oluyori AP, Inyinbor AA. Acid-activated hibiscus sabdariffa seed pods biochar for the adsorption of chloroquine phosphate: prediction of adsorption efficiency via machine learning approach. S Afr J Chem Eng. 2022;42:162–175. doi: 10.1016/j.sajce.2022.08.012.
  • Krishnan RY, Manikandan S, Subbaiya R, et al. Advanced thermochemical conversion of algal biomass to liquid and gaseous biofuels: a comprehensive review of recent advances. Sustain Energy Technol Assess. 2022;52:102211. doi: 10.1016/j.seta.2022.102211.
  • Emenike EC, Iwuozor KO, Ighalo JO, et al. Advancing the circular economy through the thermochemical conversion of waste to biochar: a review on sawdust waste-derived fuel. Biofuels. 2023:1–15. doi: 10.1080/17597269.2023.2255007.
  • Ahmed A, Abu Bakar MS, Azad AK, et al. Potential thermochemical conversion of bioenergy from acacia species in Brunei Darussalam: a review. Renew Sustain Energy Rev. 2018;82:3060–3076. doi: 10.1016/j.rser.2017.10.032.
  • Kumar S, MuthuDineshkumar R, Angkayarkan Vinayakaselvi M, et al. Enhancing environmental sustainability through waste to energy conversion of neem leaves. Mater Today Proc. 2021;46:10060–10064. doi: 10.1016/j.matpr.2021.06.143.
  • Amoloye MA, Abdulkareem SA, Adeniyi AG. Production and characterization of biochar and hybrid produced from the co-carbonization of corn husk and low-density polyethylene wastes. In: Bioenergy and biochemical processing technologies: recent advances and future demands. Switzerland AG: Springer; 2022. p. 13–25.
  • Laria JG, Gaggino R, Kreiker J, et al. Mechanical and processing properties of recycled PET and LDPE-HDPE composite materials for building components. J Thermoplast Compos Mater. 2023;36(1):418–431. doi: 10.1177/0892705720939141.
  • Zhang Y, Wenxiu Y, Zhao W, et al. Expandable polyethylene bag can improve fruit quality of pineapple cv.‘MD-2’. Cienc Rural. 2023;53(2):1–7. doi: 10.1590/0103-8478cr20210665.
  • Joshi M, Prabhakar B. Azadirachta indica (neem) in various infectious diseases. In: Herbal medicine: back to the future: volume 4, infectious diseases. United Arab Emirates: Bentham Science Publisher; 2021. p. 128.
  • Shrirangasami SR, Murugaragavan R, Rakesh SS, et al. Chemistry behind in neem (Azadirachta indica) as medicinal value to living forms–a review. J Pharmacogn Phytochem. 2020;9(6):467–469. doi: 10.22271/phyto.2020.v9.i6g.12936.
  • Adeniyi AG, Amusa VT, Emenike EC, et al. Hybrid biochar production from biomass and pigmented plastic for sustainable waste-to-energy. Emerg Mater. 2023;6(5):1481–1490. doi: 10.1007/s42247-023-00538-4.
  • Adeniyi AG, Iwuozor KO, Muritala KB, et al. Conversion of biomass to biochar using top‐lit updraft technology: a review. Biofuels Bioprod Bioref. 2023;17(5):1411–1424. doi: 10.1002/bbb.2497.
  • Emenike EC, Iwuozor KO, Okwu KC, et al. Composition and morphology of biomass-based soot from updraft gasifier system. J Renew Sustain Energy. 2023;15(4):1–14. doi: 10.1063/5.0154780.
  • Iwuozor KO, Emenike EC, Stephen AA, et al. Thermochemical recycling of waste disposable facemasks in a non-electrically powered system. Low Carbon Mater Green Constr. 2023;1(1):1–11. doi: 10.1007/s44242-023-00010-w.
  • Emenike EC, Ogunniyi S, Ighalo JO, et al. Delonix regia biochar potential in removing phenol from industrial wastewater. Bioresour Technol Rep. 2022;19:101195. doi: 10.1016/j.biteb.2022.101195.
  • Adeniyi AG, Iwuozor KO, Adeleke J, et al. Production and characterization of neem leaves biochar: effect of two different retort carbonization systems. Bioresour Technol Rep. 2023;24:101597. doi: 10.1016/j.biteb.2023.101597.
  • Adeniyi AG, Amusa VT, Iwuozor KO, et al. Thermal recycling strategy of Coca-Cola PVC label films by its co-carbonization with Terminalia ivorensis leaves. Clean Eng Technol. 2022;11:100564. doi: 10.1016/j.clet.2022.100564.
  • Haser A, Kittikunakorn N, Dippold E, et al. Continuous twin-screw wet granulation process with in-barrel drying and NIR setup for real-time moisture monitoring. Int J Pharm. 2023;630:122377. doi: 10.1016/j.ijpharm.2022.122377.
  • Adeniyi AG, et al. Co-carbonization of waste biomass with expanded polystyrene for enhanced biochar production. Biofuels. 2022;14(1):1–9.
  • Emenike EC, Iwuozor KO, Agbana SA, et al. Efficient recycling of disposable face masks via co-carbonization with waste biomass: a pathway to a cleaner environment. Clean Environ Syst. 2022;6:100094. doi: 10.1016/j.cesys.2022.100094.
  • Odeyemi SO, Iwuozor KO, Emenike EC, et al. Valorization of waste cassava peel into biochar: an alternative to electrically-powered process. Total Environ Res Themes. 2023;6:100029. doi: 10.1016/j.totert.2023.100029.
  • Iwuozor KO, Emenike EC, Abdulkadir M, et al. Effect of salt modification on biochar obtained from the thermochemical conversion of sugarcane bagasse. Sugar Tech. 2023;25(1):223–233. doi: 10.1007/s12355-022-01166-8.
  • Adeniyi AG, Adeyanju CA, Emenike EC, et al. Thermal energy recovery and valorisation of Delonix regia stem for biochar production. Environ Chall. 2022;9:100630. doi: 10.1016/j.envc.2022.100630.
  • Devi G, Alkalbani MS, Jesil A, et al. Removal of organic pollutants from textile mill effluent using Azadirachta indica powder. Trends Sci. 2021;18(24):1412–1412. doi: 10.48048/tis.2021.1412.
  • Srilatha K, Bhagawan D, Himabindu V. Pyrolysis of garden waste: comparative study of Leucaena leucocephala (Subabul leaves) and Azadirachta indica (Neem leaves) wastes. In: Waste Valorisation and Recycling: 7th IconSWM—ISWMAW 2017. Singapore: Springer; 2019. p. 293–306.
  • Adeniyi AG, Abdulkareem SA, Ighalo JO, et al. Thermochemical co-conversion of sugarcane bagasse-LDPE hybrid waste into biochar. Arab J Sci Eng. 2021;46(7):6391–6397. doi: 10.1007/s13369-020-05119-9.
  • Thangagiri B, Sakthivel A, Jeyasubramanian K, et al. Removal of hexavalent chromium by biochar derived from Azadirachta indica leaves: batch and column studies. Chemosphere. 2022;286(Pt 1):131598. doi: 10.1016/j.chemosphere.2021.131598.
  • Ighalo JO, Ogunniyi S, Adeniyi AG, et al. Competitive adsorption of heavy metals in a quaternary solution by sugarcane bagasse–LDPE hybrid biochar: equilibrium isotherm and kinetics modelling. Chem Prod Process Model. 2023;18(2):231–246. doi: 10.1515/cppm-2021-0056.
  • Yuan X, Zhang X, Lv H, et al. Co-pyrolysis of cotton stalks and low-density polyethylene to synthesize biochar and its application in Pb (II) removal. Molecules. 2022;27(15):4868. doi: 10.3390/molecules27154868.
  • Machado LMM, Lütke SF, Perondi D, et al. Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes. Waste Manag. 2020;113:96–104. doi: 10.1016/j.wasman.2020.05.038.
  • Iwuozor KO, et al. Do adsorbent pore size and specific surface area affect the kinetics of methyl orange aqueous phase adsorption? J Chem Lett. 2021;4:11.
  • Ighalo JO, Iwuozor KO, Igwegbe CA, et al. Verification of pore size effect on aqueous-phase adsorption kinetics: a case study of methylene blue. Colloids Surf A. 2021;626:127119. doi: 10.1016/j.colsurfa.2021.127119.
  • Devi RS, Dhurai B, Sivakumar P. Adsorption of acid dyes from wastewater using Azadirachta indica neem (leaf) biochar. AIP Conference Proceedings. AIP Publishing LLC; 2022.
  • Dhanavath KN, Bankupalli S, Sugali CS, et al. Optimization of process parameters for slow pyrolysis of neem press seed cake for liquid and char production. J Environ Chem Eng. 2019;7(1):102905. doi: 10.1016/j.jece.2019.102905.
  • Asokogene FO, Zaini MAA, Idris MM, et al. Methylene blue adsorption onto neem leave/chitosan aggregates: isotherm, kinetics and thermodynamics studies. Int J Chem Reactor Eng. 2020;18(1):1–16. doi: 10.1515/ijcre-2019-0093.
  • Adeniyi AG, Abdulkareem SA, Adeyanju CA, et al. Production and properties of the fibrillated plastic composite from recycled polystyrene and Luffa cylindrica. Polym Bull. 2023;80(9):9569–9588. doi: 10.1007/s00289-022-04511-9.
  • Adeniyi AG, Abdulkareem SA, Ighalo JO, et al. A study on the hybrid polystyrene composite filled with elephant-grass-biochar and doped-aluminium-content. Funct Compos Struct. 2022;4(3):035006. doi: 10.1088/2631-6331/ac8ddf.
  • Adeniyi AG, Abdulkareem SA, Odimayomi KP, et al. Production of thermally cured polystyrene composite reinforced with aluminium powder and clay. Environ Chall. 2022;9:100608. doi: 10.1016/j.envc.2022.100608.
  • Sadare OO, Ayeni AO, Daramola MO. Evaluation of adsorption and kinetics of neem leaf powder (Azadirachta indica) as a bio-sorbent for desulfurization of dibenzothiophene (DBT) from synthetic diesel. J Saudi Chem Soc. 2022;26(2):101433. doi: 10.1016/j.jscs.2022.101433.
  • Adeniyi AG, Abdulkareem SA, Emenike EC, et al. Development and characterization of microstructural and mechanical properties of hybrid polystyrene composites filled with kaolin and expanded polyethylene powder. Results Eng. 2022;14:100423. doi: 10.1016/j.rineng.2022.100423.
  • Alarifi IM. Fabrication and characterization of neem leaves waste material reinforced composites. Mater Today Proc. 2021;47:5946–5954. doi: 10.1016/j.matpr.2021.04.488.
  • Hatiya NA, Reshad AS, Negie ZW. Chemical modification of neem (Azadirachta indica) biomass as bioadsorbent for removal of Pb2+ ion from aqueous waste water. Adsorp Sci Technol. 2022;2022:1–18. doi: 10.1155/2022/7813513.
  • Tulashie SK, Adjei F, Abraham J, et al. Potential of neem extracts as natural insecticide against fall armyworm (Spodoptera frugiperda (J. E. Smith) (lepidoptera: noctuidae)). Case Stud Chem Environ Eng. 2021;4:100130. doi: 10.1016/j.cscee.2021.100130.
  • Adeniyi AG, Ogunniyi S, Iwuozor KO, et al. Thermochemical conversion of African balsam leaves‐cow dung hybrid wastes into biochar. Biofuels Bioprod Bioref. 2023;17(3):510–522. doi: 10.1002/bbb.2453.
  • Adeniyi AG, Amusa VT, Iwuozor KO, et al. Valorization of waste biaxially‐oriented polypropylene (BOPP) plastic films by its co‐carbonization with almond leaves. Environ Prog Sustain Energy. 2022;42:e14064.
  • Adeniyi AG, Iwuozor KO, Emenike EC, et al. Thermochemical co-conversion of biomass-plastic waste to biochar: a review. Green Chem Eng. 2023. doi: 10.1016/j.gce.2023.03.002.
  • Iwuozor KO, Emenike EC, Omonayin EO, et al. Unlocking the hidden value of pods: a review of thermochemical conversion processes for biochar production. Bioresour Technol Rep. 2023;22:101488. doi: 10.1016/j.biteb.2023.101488.
  • Danmallam AA, Dabature WL, Pindiga NY, et al. The kinetics of the adsorption process of Cr (VI) in aqueous solution using neem seed husk (Azadirachta indica) activated carbon. Phys Sci Int J. 2020;24(1):1–13. doi: 10.9734/psij/2020/v24i130169.
  • Das R, Mukherjee A, Sinha I, et al. Synthesis of potential bio-adsorbent from Indian neem leaves (Azadirachta indica) and its optimization for malachite green dye removal from industrial wastes using response surface methodology: kinetics, isotherms and thermodynamic studies. Appl Water Sci. 2020;10(5):1–18. doi: 10.1007/s13201-020-01184-5.
  • Xu X, Zhao Y, Sima J, et al. Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review. Bioresour Technol. 2017;241:887–899. doi: 10.1016/j.biortech.2017.06.023.
  • Iwuozor KO, Chizitere Emenike E, Ighalo JO, et al. Review on the thermochemical conversion of sugarcane bagasse into biochar. Clean Mater. 2022;6:100162. doi: 10.1016/j.clema.2022.100162.
  • Adeniyi AG, Abdulkareem SA, Adeyanju CA, et al. Recovery of metallic oxide rich biochar from waste chicken feather. Low Carbon Mater Green Constr. 2023;1(1). doi: 10.1007/s44242-022-00002-2.
  • Thomas B, Shilpa E, Alexander L. Role of functional groups and morphology on the pH-dependent adsorption of a cationic dye using banana peel, orange peel, and neem leaf bio-adsorbents. Emerg Mater. 2021;4(5):1479–1487. doi: 10.1007/s42247-021-00237-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.