34
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Production and characterization of biodiesel from Cascabela thevetia oil using synthesized hierarchically kaolin-based zeolite A catalysts

, , &
Pages 755-766 | Received 01 Jul 2023, Accepted 10 Dec 2023, Published online: 14 Feb 2024

References

  • Harlen FB, Renato P, Luiz CD, et al. Criteria and aldehyde emissions from a diesel euro V engine using diesel-biodiesel blends in Brazil. Environ Sci Pollut Res. 2019;26:12470–12480.
  • Yuvarajan D, Dinesh BM, Ganesan S, et al. Inedible oil feedstocks for biodiesel production: a review of production technologies and physicochemical properties. Sustain Chem Pharm. 2022;30:100840.
  • Oyekunle DT, Oyekunle DO. Biodiesel production from yellow oleander seed oil via heterogeneous catalyst: performance evaluation of Minitab response surface methodology and artificial neural network. J. Mater. Environ. Sci. 2018;9(8):2468–2477.
  • Warrav AA. Physico-chemical, gas chromatography-mass spectrometry (GC-MS) analysis and soap production from Thervetia peruviana seed oil. Austin J Biotechnol Bioeng. 2017;4(1):1072.
  • Hussein HH, Awad EM, Omar AH, et al. Biodiesel production from waste cooking oil using. Homogeneous Catal Egypt J Chem. 2021;64(6):2827–2832.
  • Ming CH, Peir HL, Nguyen VL, et al. Enhancement of biodiesel production from high-acid-value waste cooking oil via a microwave reactor using a homogeneous alkaline catalyst. Energies. 2021;14(2):437.
  • Tiemin X, Zhongcheng S, Ahmed IS, et al. An optical study on spray and combustion characteristics of ternary hydrogenated catalytic biodiesel/methanol/n-octanol blends; part П: liquid length and in-flame soot. Energy. 2021;227:120543. doi: 10.1016/j.energy.2021.120543.
  • Issara C, Khamphe P, Arkom P, et al. Biodiesel produced using potassium methoxide homogeneous alkaline catalyst: effects of various factors on soap formation. Biomass Convers Biorefin. 2021;13(10):1–11.
  • Ashok KY, Amit P, Uttam G, et al. Comparative study of biodiesel production methods from yellow oleander oil and its performance analysis on an agricultural diesel engine. Int J Ambient Energy. 2019;40(2):152–157.
  • Eugenio SA, Horacio B, Luis RH. Biodiesel production from Cascabela ovata seed oil. Bioresour Technol Rep. 2019;7:100220.
  • Marwan AS, Sohrab H, Faisal ASA, et al. A review on non-edible oil as a potential feedstock for biodiesel: physicochemical properties and production technologies. RSC Adv. 2021;11:25018.
  • Malik Z, Ayoub M, Hizami M, et al. A comprehensive review on oil extraction and biodiesel production technologies. Sustainability. 2021;13(2):788. doi: 10.3390/su13020788.
  • Lawer-Yolar G, Dawson-Andoh B, Atta-Obeng E. Synthesis of biodiesel from tall oil fatty acids by homogeneous and heterogeneous catalysis. Sustain Chem. 2021;2(1):206–221. doi: 10.3390/suschem2010012.
  • Asma N, Karna W, Iip IF, et al. Self-regeneration of monodisperse hierarchical porous NiMo/silica catalyst induced by NaHCO3 for biofuel production. Waste Biomass Valorization. 2021;13:2335–2347.
  • Zhang Y, Niu S, Lu C, et al. Catalytic performance of NaAlO2/Al2O3 as heterogeneous nano-catalyst for biodiesel production: optimization using response surface methodology. Energy Convers. Manage. 2020;203:112263. doi: 10.1016/j.enconman.2019.112263.
  • Aqeel A, Cátia F, Vladimir Z. Nanostructured large-pore zeolite: the enhanced accessibility of active sites and its effect on the catalytic performance. Microporous Mesoporous Mater. 2020;293:109805.
  • Avinash PI, Anuj KC, Rafael P, et al. Advances in nanocatalysts mediated biodiesel production. A critical appraisal (Review). Symmetry. 2020;12(2):256.
  • Juliana FSE, Deise SF, Dilson C. Improved accessibility of Na-LTA zeolite catalytic sites for the knoevenagel condensation reaction. Microporous Mesoporous Mater. 2021;323. doi: 10.1016/j.micromeso.2021.111191.
  • Raquel AB, Antonia MMF, André LP, et al. Hierarchical zeolite based on multiporous zeolite A and bacterial cellulose: an efficient adsorbent of Pb2+. Microporous Mesoporous Mater. 2021;312:110752.
  • Diogo PSS, Alef TS, Thaís RSR, et al. Monosodium glutamate-mediated hierarchical porous formation in LTA zeolite to enhance CO2 adsorption performance. J Sol-Gel Sci Technol. 2021;100:360–372.
  • Suyeon Y, Seungdon K, Kyungsu N. Synthesis of LTA zeolites with controlled crystal sizes by variation of synthetic parameters: effect of Na+ concentration, aging time, and hydrothermal conditions. J Sol-Gel Sci Technol. 2021;98:411–421.
  • Yuxuan J, Li L, Ze L, et al. Synthesis and characterization of low-cost zeolite NaA from coal gangue by hydrothermal method. Adv Powder Technol. 2021;32(3):791–801. doi: 10.1016/j.apt.2021.01.024.
  • Huayu Z, Yanwei Y, Zhengbao W. Synthesis of hierarchical LTA zeolite membranes by vapor phase transformation. J Membr Sci. 2023;671(5):121391.
  • Sayed MA, Ahmed SA, Othman SI, et al. Kinetic, thermodynamic, and mechanistic studies on the effect of the preparation method on the catalytic activity of synthetic zeolite-A during the transesterification of waste cooking oil. Catalysts. 2023;13(1):30. doi: 10.3390/catal13010030.
  • Mayank C. Biodiesel production & its performance characteristics measurement: a review and analysis. J Chem Pharmaceut Res. 2015;7(5):1075–1082.
  • Norris FA. Fats and Fatty Acids, In: KirkOthmer encyclopedia of chemical technology. New York: John Wiley;1965. pp: 170–886.
  • Pearson ME. Composition and Analysis of Foods. Ed. Ronald, S. Kirk and Ronald Sawyer, Ninth Edition; 1991. pp: 640–642.
  • Guangyuan Y, Jingjing L, Wanzhong Z, et al. Antimicrobial activity of X zeolite exchanged with Cu2+ and Zn2+ on Escherichia coli and Staphylococcus aureus. Environ Sci Pollut Res Int. 2019;26(3):2782–2793. doi: 10.1007/s11356-018-3750-z.
  • Younesse H, Hicham M, Said M, et al. Effect of sodium hexafluorosilicate addition on the properties of metakaolin based geopolymers cured at ambient temperature. Silicon. 2021;13(5):6789–6797.
  • Izabel MC, Catherine L, Javier PP, et al. Characterization of hierarchical zeolites: combining adsorption/intrusion, electron microscopy, diffraction, and spectroscopic techniques. Microporous Mesoporous Mater. 2019;287:167–176. doi: 10.1016/j.micromeso.2019.05.057-02328660f.
  • Yuhan H, Min L, Chenxi S, et al. Synthesis of ultra-small NaA zeolite nanocrystals at near room temperature. J Porous Mater. 2022;30:1143–1147.
  • Zou Q, Dai L, Li Y, et al. Synthesis and characterization of nPCD sintered from OLC and microdiamond. J Mater Sci. 2022;57(46):21277–21295. doi: 10.1007/s10853-022-07967-2.
  • Xicheng J, Wasim K, Zhijie W, et al. Modern synthesis strategies for hierarchical zeolites: bottom-up versus top-down strategies. Adv Powder Technol. 2019;30(3):467–484.
  • Celine P, David L, Lucian R, et al. Morphology and topology assessment in hierarchical zeolite materials: adsorption hysteresis, scanning behavior, and domain theory. Inorg Chem Front. 2022;9:2903–2916.
  • Banik SK, Rouf MA, Rabeya T, et al. Production of biodiesel from neem seed oil. Bangladesh J Sci Ind Res. 2018;53(3):211–218. doi: 10.3329/bjsir.v53i3.38268.
  • Tania R, Shalini S, Yogesh CS. Green biodiesel synthesis from Ricinus communis oil (castor seed oil) using potassium promoted lanthanum oxide catalyst: kinetic, thermodynamic and environmental studies. Fuel. 2020;274:117644.
  • Muhammad IT, Karthikeyan V, Wei W, et al. Production of renewable fuels and chemicals from fats, oils, and grease (FOG) using homogeneous and heterogeneous catalysts: design, validation, and optimization. Chem Eng J. 2021;424:13019.
  • Karthikeyan V. Experimental investigation on emission reduction in neem oil biodiesel using selective catalytic reduction and catalytic converter techniques. Environ Sci Pollut Res. 2018;25:13548–13559.
  • Edwin K, Ketlogetswe C, Gandure J. Effects of fatty acids composition on fuel properties of Jatropha curcas biodiesel. Smart Grid Renew Energy. 2020;11(10):16.
  • Arun SB, Suresh R, Avinash E. Optimization of biodiesel production from yellow oleander (Thevetia peruviana) using response surface methodology. Mater Today Proc. 2017;4(8):7293–7301. doi: 10.1016/j.matpr.2017.07.059.
  • Olutoye MA, Wong SW, Chin LH, et al. Synthesis of fatty acid methyl esters via transesterification of waste cooking oil by methanol with a barium-modified monomorillonite K10 catalyst. Renew Energy. 2015;86:392–398. doi: 10.1016/j.renene.2015.08.016.
  • Syahirah Y, Syamsul KMW, Farah WH. Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology. Renew Energy. 2020;157:164–172.
  • Buchori L, Anggoro DD, Tsaniya F, et al. The effect of catalyst loading on biodiesel production from lard. J Phys Conf Ser. 2019;1295:012005.
  • Yeshimebet SE, Tadios TM, Getachew AW, et al. Improved production from waste cooking oil with mixed methanol-ethanol using enhanced eggshell-dried CaO nano-catalyst. Sci Rep. 2021;11:6708.
  • Barboza L, Oliveira V, Ribeiro J, et al. Influence of temperature in the transesterification process for biodiesel production from residual cooking oil. SAE Technical Paper. 2020-36-0153, 2020.
  • Onyeka SO, Ahmed HE, Marwa E. Comparative effect of reaction time on biodiesel production from low FFA beef tallow: a definition of product yield. SN Appl Sci. 2019;1:140.
  • Sarpal AS, Claudia MT, Paulo RMS, et al. Biodiesel and polyunsaturated fatty acid (PUFA) potential of microalgae biomass – a short review. RDMS. 2019;10(4). doi: 10.31031/RDMS.2019.10.000744.
  • Mohammad SM, Nurul FN, Norzelawati A, et al. Biodiesel composition effects on density and viscosity of diesel-biodiesel blend: a CFD study. CFD Lett. 2020;12(4):100–109.
  • Kefas HM, Kovo AS, Odo G, et al. Synthesis of hierarchical zeolites Y catalyst for the production of biodiesel from waste vegetable oil. Niger J Eng Technol Res. 2022;8(1):57–65.
  • Nurhani FJ, Ahmad MR, Mohammad AH, et al. Biodiesel from high acid value grease trap waste: process optimization and purification using bio-based adsorbent. Biofuels Bioprod Biorefin. 2022;16(6):1690–1707.
  • Jonathan FS, Carlo AG. Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: a review. Renew Sustain Energy Rev. 2017;72:774–790.
  • Farid J, Mehdi A, Mohammed SH, et al. Effect of fatty acid profiles and molecular structures of nine new sources of biodiesel on combustion and emission. ACS Omega. 2020;5:16053–16063.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.