14
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Study of performance, emission characteristics, and parametric optimization of compression ignition engine using biofuels: A review

, &
Received 29 Jul 2023, Accepted 03 Apr 2024, Published online: 01 Jul 2024

References

  • Pietrosemoli L, Rodríguez-Monroy C. The venezuelan energy crisis: renewable energies in the transition towards sustainability. Renew Sustain Energy Rev. 2019;105:415–426. doi: 10.1016/j.rser.2019.02.014.
  • Bagdadee AH, Zhang L. Electrical power crisis solution by the developing renewable energy based power generation expansion. Energy Rep. 2020;6:480–490. doi: 10.1016/j.egyr.2019.11.106.
  • Poudyal R, Loskot P, Nepal R, et al. Mitigating the current energy crisis in Nepal with renewable energy sources. Renew Sustain Energy Rev. 2019;116:109388. doi: 10.1016/j.rser.2019.109388.
  • Andreas JJ, Burns C, Touza J. Overcoming energy injustice? Bulgaria’s renewable energy transition in times of crisis. Energy Res Soc Sci. 2018;42:44–52. doi: 10.1016/j.erss.2018.02.020.
  • Murugesan A, Umarani C, Subramanian R, et al. Bio-diesel as an alternative fuel for diesel engines-A review. Renew Sustain Energy Rev. 2009;13(3):653–662. doi: 10.1016/j.rser.2007.10.007.
  • Lugo-Méndez H, Sánchez-Domínguez M, Sales-Cruz M, et al. Synthesis of biodiesel from coconut oil and characterization of its blends. Fuel. 2021;295:120595. doi: 10.1016/j.fuel.2021.
  • Attia AMA, Kulchitskiy AR, Nour M, et al. The influence of castor biodiesel blending ratio on engine performance including the determined diesel particulate matters composition. Energy. 2022;239:121951. doi: 10.1016/j.energy.2021.121951.
  • Jamshaid M, Masjuki HH, Kalam MA, et al. Experimental investigation of performance, emissions and tribological characteristics of B20 blend from cottonseed and palm oil biodiesels. Energy. 2022;239:121894. doi: 10.1016/j.energy.2021.
  • Sayyed S, Das RK, Kulkarni K. Experimental investigation for evaluating the performance and emission characteristics of DICI engine fueled with dual biodiesel-diesel blends of Jatropha, Karanja, Mahua, and Neem. Energy. 2022;238:121787. doi: 10.1016/j.energy.2021.121787.
  • Demirbas A, Karslioglu S. Biodiesel production facilities from vegetable oils and animal fats. Energy Sources, Part A Recover. Util Environ Eff. 2007;29(2):133–141. doi: 10.1080/009083190951320.
  • Rai RK, Sahoo RR. Engine performance, emission, and sustainability analysis with diesel fuel-based shorea robusta methyl ester biodiesel blends. Fuel. 2021;292:120234. doi: 10.1016/j.fuel.2021.120234.
  • Shrivastava N, Shrivastava D, Shrivastava V. Experimental investigation of performance and emission characteristics of diesel engine using jatropha biodiesel with alumina nanoparticles. Int J Green Energy. 2018;15(2):136–143. doi: 10.1080/15435075.2018.1428807.
  • Brahma S, Nath B, Basumatary B, et al. Biodiesel production from mixed oils: a sustainable approach towards industrial biofuel production. Chem Eng J Adv. 2022;10:100284. doi: 10.1016/j.ceja.2022.100284.
  • Kılıç M, Uzun BB, Pütün E, et al. Optimization of biodiesel production from castor oil using factorial design. Fuel Process. Technol. 2013;111:105–110. doi: 10.1016/j.fuproc.2012.05.032.
  • dos Santos Alves CE, Belarmino LC, Padula AD. Feedstock diversification for biodiesel production in Brazil: using the policy analysis matrix (PAM) to evaluate the impact of the PNPB and the economic competitiveness of alternative oilseeds. Energy Policy. 2017;109:297–309. doi: 10.1016/j.enpol.2017.07.009.
  • Wei J, Wang Y. Effects of biodiesels on the physicochemical properties and oxidative reactivity of diesel particulates: a review. Sci Total Environ. 2021;788(193):147753. doi: 10.1016/j.scitotenv.2021.147753.
  • Krishnasamy A, Bukkarapu KR. A comprehensive review of biodiesel property prediction models for combustion modeling studies. Fuel. 2021;302:121085. doi: 10.1016/j.fuel.2021.121085.
  • Gojun M, Šalić A, Zelić B. Integrated microsystems for lipase-catalyzed biodiesel production and glycerol removal by extraction or ultrafiltration. Renew Energy. 2021;180:213–221. doi: 10.1016/j.renene.2021.08.064.
  • Singh D, Sharma D, Soni SL, et al. A comprehensive review of physicochemical properties, production process, performance and emissions characteristics of 2nd generation biodiesel feedstock: Jatropha curcas. Fuel. 2021;285:119110. doi: 10.1016/j.fuel.2020.119110.
  • Sun S, Guo J, Chen X. Biodiesel preparation from semen abutili (abutilon theophrasti medic.) seed oil using low-cost liquid lipase eversa® transform 2.0 as a catalyst. Ind Crops Prod. 2021;169(May):113643. doi: 10.1016/j.indcrop.2021.113643.
  • Elango RK, Sathiasivan K, Muthukumaran C, et al. Transesterification of castor oil for biodiesel production: process optimization and characterization. Microchem J. 2019;145:1162–1168. doi: 10.1016/j.microc.2018.12.039.
  • Anand Kumar SA, Sakthinathan G, Vignesh R, et al. Optimized transesterification reaction for efficient biodiesel production using indian oil sardine fish as feedstock. Fuel. 2019;253:921–929. doi: 10.1016/j.fuel.2019.04.172.
  • Khatibi M, Khorasheh F, Larimi A. Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell. Renew Energy. 2021;163:1626–1636. doi: 10.1016/j.renene.2020.10.039.
  • Sulaiman NF, Hashim ANN, Toemen S, et al. Biodiesel production from refined used cooking oil using co-metal oxide catalyzed transesterification. Renew Energy. 2020;153:1–11. doi: 10.1016/j.renene.2020.01.158.
  • Kant Bhatia S, Kant Bhatia R, Jeon J-M, et al. An overview on advancements in biobased transesterification methods for biodiesel production: oil resources, extraction, biocatalysts, and process intensification technologies. Fuel. 2021;285:119117. doi: 10.1016/j.fuel.2020.119117.
  • Sathyamurthy R, Balaji D, Gorjian S, et al. Performance, combustion and emission characteristics of a DI-CI diesel engine fueled with corn oil methyl ester biodiesel blends. Sustain Energy Technol Assessments. 2021;43:100981. doi: 10.1016/j.seta.2020.100981.
  • Kodate SV, Satyanarayana Raju P, Yadav AK, et al. Investigation of preheated dhupa seed oil biodiesel as an alternative fuel on the performance, emission and combustion in a CI engine. Energy. 2021;231:120874. doi: 10.1016/j.energy.2021.120874.
  • Mourad M, Mahmoud KRM, NourEldeen ESH. Improving diesel engine performance and emissions characteristics fuelled with biodiesel. Fuel. 2021;302:121097. doi: 10.1016/j.fuel.2021.121097.
  • Mubarak M, Shaija A, Suchithra TV. Experimental evaluation of salvinia molesta oil biodiesel/diesel blends fuel on combustion, performance and emission analysis of diesel engine. Fuel. 2021;287:119526. doi: 10.1016/j.fuel.2020.119526.
  • Baweja S, Trehan A, Kumar R. Combustion, performance, and emission analysis of a CI engine fueled with mustard oil biodiesel blended in diesel fuel. Fuel. 2021;292:120346. doi: 10.1016/j.fuel.2021.120346.
  • Srikanth HV, G S, Manne B, et al. Niger seed oil biodiesel as an emulsifier in diesel-ethanol blends for compression ignition engine. Renew Energy. 2021;163:1467–1478. doi: 10.1016/j.renene.2020.07.010.
  • Goga G, Chauhan BS, Mahla SK, et al. Performance and emission characteristics of diesel engine fueled with rice bran biodiesel and n-butanol. Energy Rep. 2019;5:78–83. doi: 10.1016/j.egyr.2018.12.002.
  • Subramaniam M, Solomon JM, Nadanakumar V, et al. Experimental investigation on performance, combustion and emission characteristics of DI diesel engine using algae as a biodiesel. Energy Rep. 2020;6:1382–1392. doi: 10.1016/j.egyr.2020.05.022.
  • Vellaiyan S. Combustion, performance and emission evaluation of a diesel engine fueled with soybean biodiesel and its water blends. Energy. 2020;201:117633. doi: 10.1016/j.energy.2020.117633.
  • Krishania N, Rajak U, Nath Verma T, et al. Effect of microalgae, tyre pyrolysis oil and jatropha biodiesel enriched with diesel fuel on performance and emission characteristics of CI engine. Fuel. 2020;278:118252. doi: 10.1016/j.fuel.2020.118252.
  • Singh M, Sandhu SS. Performance, emission and combustion characteristics of multi-cylinder CRDI engine fueled with argemone biodiesel/diesel blends. Fuel. 2019;265:117024. doi: 10.1016/j.fuel.2020.117024.
  • Maawa WN, Mamat R, Najafi G, et al. Performance, combustion, and emission characteristics of a CI engine fueled with emulsified diesel-biodiesel blends at different water contents. Fuel. 2020;267:117265. doi: 10.1016/j.fuel.2020.
  • Ramadhas AS, Muraleedharan C, Jayaraj S. Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil. Renew Energy. 2005;30(12):1789–1800. doi: 10.1016/j.renene.2005.01.009.
  • Nalgundwar A, Paul B, Sharma SK. Comparison of performance and emissions characteristics of di CI engine fueled with dual biodiesel blends of palm and jatropha. Fuel. 2016;173:172–179. doi: 10.1016/j.fuel.2016.01.022.
  • Saravanan A, Murugan M, Sreenivasa Reddy M, et al. Performance and emission characteristics of variable compression ratio CI engine fueled with dual biodiesel blends of rapeseed and mahua. Fuel. 2020;263:116751. doi: 10.1016/j.fuel.2019.116751.
  • Banapurmath NR, Tewari PG, Hosmath RS. Performance and emission characteristics of a DI compression ignition engine operated on honge, jatropha and sesame oil methyl esters. Renew. Energy. 2008;33(9):1982–1988. doi: 10.1016/j.renene.2007.11.012.
  • Mallikappa DN, Reddy RP, Murthy CSN. Performance and emission characteristics of double cylinder CI engine operated with cardanol bio fuel blends. Renew Energy. 2012;38(1):150–154. doi: 10.1016/j.renene.2011.07.012.
  • Gharehghani A, Mirsalim M, Hosseini R. Effects of waste fish oil biodiesel on diesel engine combustion characteristics and emission. Renew Energy. 2017;101:930–936. doi: 10.1016/j.renene.2016.09.045.
  • Prakash T, Geo VE, Martin LJ, et al. Effect of ternary blends of bio-ethanol, diesel and castor oil on performance, emission and combustion in a CI engine. Renew Energy. 2018;122:301–309. doi: 10.1016/j.renene.2018.01.070.
  • Singh P, Chauhan SR, Goel V. Assessment of diesel engine combustion, performance and emission characteristics fuelled with dual fuel blends. Renew Energy. 2018;125:501–510. doi: 10.1016/j.renene.2018.02.105.
  • Teoh YH, How HG, Masjuki HH, et al. Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with moringa oleifera biodiesel-diesel blends. Renew Energy. 2019;136:521–534. doi: 10.1016/j.renene.2018.12.110.
  • Yaliwal VS, Banapurmath NR, Gaitonde VN, et al. Simultaneous optimization of multiple operating engine parameters of a biodiesel-producer gas operated compression ignition (CI) engine coupled with hydrogen using response surface methodology. Renew Energy. 2019;139:944–959. doi: 10.1016/j.renene.2019.02.104.
  • Liang X, Zhao B, Wang K, et al. Application of response surface methodology for the joint optimization of performance and emission characteristics of a diesel engine. Int J Green Energy. 2021;18(7):697–707. doi: 10.1080/15435075.2021.1875475.
  • Karra PK, Kong SC. Diesel engine emissions reduction using particle swarm optimization. Combust Sci Technol. 2010;182(7):879–903. doi: 10.1080/00102200903418260.
  • Balki MK, Sayin C, Sarıkaya M. Optimization of the operating parameters based on taguchi method in an SI engine used pure gasoline, ethanol and methanol. Fuel. 2016;180:630–637. doi: 10.1016/j.fuel.2016.04.098.
  • Kumar S, Dinesha P. Optimization of engine parameters in a bio diesel engine run with honge methyl ester using response surface methodology. Meas J Int Meas Confed. 2018;125:224–231. doi: 10.1016/j.measurement.2018.04.091.
  • Özgür C. Optimization of biodiesel yield and diesel engine performance from waste cooking oil by response surface method (RSM). Pet Sci Technol. 2021;39:1–21. doi: 10.1080/10916466.2021.1954019.
  • Mahla SK, Safieddin Ardebili SM, Sharma H, et al. Determination and utilization of optimal diesel/n-butanol/biogas derivation for small utility dual fuel diesel engine. Fuel. 2021;289:119913. doi: 10.1016/j.fuel.2020.119913.
  • Harun Kumar M, Dhana Raju V, Kishore PS, et al. Influence of injection timing on the performance, combustion and emission characteristics of diesel engine powered with tamarind seed biodiesel blend. Int J Ambient Energy. 2020;41(9):1007–1015. doi: 10.1080/01430750.2018.1501741.
  • Venu H, Raju VD, Subramani L. Combined effect of influence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends. Energy. 2019;174:386–406. doi: 10.1016/j.energy.2019.02.163.
  • Abuhabaya A, Fieldhouse J, Brown D. The optimization of biodiesel production by using response surface methodology and its effect on compression ignition engine. Fuel Process. Technol. 2013;113:57–62. doi: 10.1016/j.fuproc.2013.03.025.
  • Adin MŞ, Altun Ş, Adin MŞ. Effect of using bioethanol as fuel on start-up and warm-up exhaust emissions from a diesel power generator. Int J Ambient Energy. 2021;43(1):5711–5717. 10.1080/01430750.2021.1977387. doi: 10.1080/01430750.2021.1977387.
  • Altun Ş, Adin MŞ, İlçin K. Monohydric aliphatic alcohols as liquid fuels for using in internal combustion engines: a review. Proc Inst Mech Eng., Part E: J Process Mech Eng. 2023. doi: 10.1177/09544089231160472.
  • Rosha P, Mohapatra SK, Mahla SK, et al. Effect of compression ratio on combustion, performance, and emission characteristics of compression ignition engine fueled with palm (B20) biodiesel blend. Energy. 2019;178:676–684. doi: 10.1016/j.energy.2019.04.185.
  • Roso VR, Santos NDSA, Alvarez CEC, et al. Effects of mixture enleanment in combustion and emission parameters using a flex-fuel engine with ethanol and gasoline. Appl Therm Eng. 2019;153:463–472. doi: 10.1016/j.applthermaleng.2019.03.012.
  • Shen B, Su Y, Yu H, et al. Experimental study on the effect of injection strategies on the combustion and emissions characteristic of gasoline/methanol dual-fuel turbocharged engine under high load. Energy. 2023;282:128925. doi: 10.1016/j.energy.2023.128925.
  • Kishore PS, Dhana Raju V, Kolli M. Optimisation of intake parameters for diesel engine fuelled with diesel-tamarind seed methyl ester biodiesel blend by taguchi method. Int J Ambient Energy. 2020;41(10):1154–1164. doi: 10.1080/01430750.2018.1507928.
  • Sivaramakrishnan K, Ravikumar P. Optimization of operational parameters on performance and emissions of a diesel engine using biodiesel. Int J Environ Sci Technol. 2014;11(4):949–958. doi: 10.1007/s13762-013-0273-5.
  • Uslu S. Optimization of diesel engine operating parameters fueled with palm oil-diesel blend: comparative evaluation between response surface methodology (RSM) and artificial neural network (ANN). Fuel. 2020;276:117990. doi: 10.1016/j.fuel.2020.117990.
  • Singh Y, Sharma A, Kumar Singh G, et al. Optimization of performance and emission parameters of direct injection diesel engine fuelled with pongamia methyl esters-response surface methodology approach. Ind Crops Prod. 2018;126:218–226. doi: 10.1016/j.indcrop.2018.10.035.
  • Ramesh, Praveen, Vivekanandan, Sathya, Prakash, D., Sivaramakrishnan, “Performance optimization of an engine for canola oil blended diesel with Al2O3 nanoparticles through single and multi-objective optimization techniques,” Fuel, 288, 119617, 2021, doi: 10.1016/j.fuel.2020.119617.
  • Singh G, Mohapatra SK, S. Ragit S, et al. Optimization of biodiesel production from grape seed oil using taguchi’s orthogonal array​. Energy Sources Part A. 2018;40(18):2144–2153. 10.1080/15567036.2018.1495778. doi: 10.1080/15567036.2018.1495778.
  • Jit Sarma C, Sharma P, Bora BJ, et al. Improving the combustion and emission performance of a diesel engine powered with mahua biodiesel and TiO2 nanoparticles additive. Alexandria Eng J. 2023;72:387–398. doi: 10.1016/j.aej.2023.03.070.
  • Sharma A, Muqeem M, Sherwani AF, et al. Optimization of diesel engine input parameters running on polanga biodiesel to improve performance and exhaust emission using MOORA technique with standard deviation. Energy Sources, Part A Recover. Util Environ Eff. 2018;40(22):2753–2770. doi: 10.1080/15567036.2018.1511647.
  • Singh A, Sinha S, Choudhary AK. Optimization of operating parameters of diesel engine powered with jatropha oil diesel blend by employing response surface methodology. Int J Renew Energy Res. 2021;11(2):504–513. doi: 10.20508/ijrer.v11i2.11808.g8172.
  • Umeuzuegbu JC, Okiy S, Nwobi-Okoye CC, et al. Computational modeling and multi-objective optimization of engine performance of biodiesel made with castor oil. Heliyon. 2021;7(3):e06516. doi: 10.1016/j.heliyon.2021.e06516.
  • Pratap B, Goyal R, Deo M, et al. Modelling and experimental study on performance and emission characteristics of citrullus colocynthis (thumba oil) diesel fuelled operated variable compression ratio diesel engine. Energy. 2019;182:349–368. doi: 10.1016/j.energy.2019.05.164.
  • Erdoğan S, Aydın S, Balki MK, et al. Operational evaluation of thermal barrier coated diesel engine fueled with biodiesel/diesel blend by using MCDM method base on engine performance, emission and combustion characteristics. Renew Energy. 2020;151:698–706. doi: 10.1016/j.renene.2019.11.075.
  • Ayhan V, Çangal Ç, Cesur İ, et al. Optimization of the factors affecting performance and emissions in a diesel engine using biodiesel and EGR with taguchi method. Fuel. 2020;261:116371. doi: 10.1016/j.fuel.2019.
  • Prasada Rao K, Appa Rao BV. Parametric optimization for performance and emissions of an IDI engine with mahua biodiesel. Egypt J Pet. 2017;26(3):733–743. doi: 10.1016/j.ejpe.2016.10.003.
  • Das AK, Padhi MR, Hansdah D, et al. Optimization of engine parameters and ethanol fuel additive of a diesel engine fuelled with waste plastic oil blended diesel. Process Integr Optim Sustain. 2020;4(4):465–479. doi: 10.1007/s41660-020-00134-7.
  • Agrawal T, Gautam R, Agrawal S, et al. Optimization of engine performance parameters and exhaust emissions in compression ignition engine fueled with biodiesel-alcohol blends using taguchi method, multiple regression and artificial neural network. Sustain Futur. 2020;2:100039. doi: 10.1016/j.sftr.2020.100039.
  • Shirneshan A, Samani BH, Ghobadian B. Optimization of biodiesel percentage in fuel mixture and engine operating conditions for diesel engine performance and emission characteristics by artificial bees colony algorithm. Fuel. 2016;184(x):518–526. doi: 10.1016/j.fuel.2016.06.117.
  • Mathew GM, Raina D, Narisetty V, et al. Recent advances in biodiesel production: challenges and solutions. Sci Total Environ. 2021;794:148751. doi: 10.1016/j.scitotenv.2021.148751.
  • Singh Y, Sharma A, Tiwari S, et al. Optimization of diesel engine performance and emission parameters employing cassia tora methyl esters-response surface methodology approach. Energy. 2019;168:909–918. doi: 10.1016/j.energy.2018.12.013.
  • Kumar Rai R, Rekha Sahoo R. Taguchi-Grey method optimization of VCR engine performance and heat losses by using shorea robusta biodiesel fuel. Fuel. 2020;281:118399. doi: 10.1016/j.fuel.2020.118399.
  • Vinay, Bhupender Singh, Yadav, Ashok Kumar. Optimisation of performance and emission characteristics of CI engine fuelled with mahua oil methyl ester – diesel blend using response surface methodology, Int J Ambient Energy, 2020;41(6):674–685. doi: 10.1080/01430750.2018.1484804.
  • Kumar Chidambaram R, Sonthalia A, Poornananadan G, et al. Optimization of compression ratio and injection timing of a diesel engine fueled with oxygenated blends using fuzzy logic-based taguchi method, energy sources. Part A Recover Util Environ Eff. 2021;1–21. doi: 10.1080/15567036.2020.1871123.
  • Kamarulzaman MK, Abdullah A. Multi-objective optimization of diesel engine performances and exhaust emissions characteristics of hermetia illucens larvae oil-diesel fuel blends using response surface methodology, energy sources. Part A Recover Util Environ Eff. 2020;1–14. doi: 10.1080/15567036.2020.1849450.
  • Ganapathy T, Gakkhar RP, Murugesan K. Optimization of performance parameters of diesel engine with jatropha biodiesel using response surface methodology. Int J Sustain Energy. 2011;30(sup1):S76–S90. doi: 10.1080/14786451.2011.594889.
  • Gopal K, Sathiyagnanam AP, Rajesh Kumar B, et al. Prediction and optimization of engine characteristics of a DI diesel engine fueled with cyclohexanol/diesel blends, energy sources. Part A Recover Util Environ Eff. 2020;42(16):2006–2017. doi: 10.1080/15567036.2019.1607923.
  • Dey S, Reang NM, Deb M, et al. Study on performance-emission trade-off and multi-objective optimization of diesel-ethanol-palm biodiesel in a single cylinder CI engine: a taguchi-fuzzy approach, energy sources. Part A Recover Util Environ Eff. 2020;42:1–21. doi: 10.1080/15567036.2020.1767234.
  • Swamy D, Kowsik Y, Dhana Raju V, et al. Effect of 1-butanol on the characteristics of diesel engine powered with novel tamarind biodiesel for the future sustainable energy source, energy sources. Part A Recover Util Environ Eff. 2019;1–19. doi: 10.1080/15567036.2019.1675810.
  • Rosha P, Dhir A, Mohapatra SK. Influence of gaseous fuel induction on the various engine characteristics of a dual fuel compression ignition engine: a review. Renew Sustain Energy Rev. 2018;82:3333–3349. doi: 10.1016/j.rser.2017.10.055.
  • Marwaha A, Dhir A, Mahla SK, et al. An overview of solid base heterogeneous catalysts for biodiesel production. Catalysis Reviews. 2018;60(4):594–628. 10.1080/01614940.2018.1494782. doi: 10.1080/01614940.2018.1494782.
  • Marwaha A, Rosha P, Mohapatra SK, et al. Biodiesel production from terminalia bellerica using eggshell-based green catalyst: an optimization study with response surface methodology. Energy Rep. 2019;5:1580–1588. doi: 10.1016/j.egyr.2019.10.022.
  • Rosha P, Kumar S, Senthil Kumar P, et al. Impact of compression ratio on combustion behavior of hydrogen enriched biogas-diesel operated CI engine. Fuel. 2022;310:122321. doi: 10.1016/j.fuel.2021.122321.
  • Rosha P, Ibrahim H, Nanda AK, et al. Effect of hydrogen-enriched biogas induction on combustion, performance, and emission characteristics of dual-fuel compression ignition engine. Asia-Pacific J Chem Eng. 2020;15(3):e2435. doi: 10.1002/apj.2435.
  • Singh J, Singh S, Mohapatra SK. Production of syngas from agricultural residue as a renewable fuel and its sustainable use in dual-fuel compression ignition engine to investigate performance, emission, and noise characteristics. Energy Sources Part A. 2019;42(1):41–55. 10.1080/15567036.2019.1587053. doi: 10.1080/15567036.2019.1587053.
  • Mahmood HA, Al-Sulttani AO, Attia OH, et al. Investigation of various parameters of dual fuel engine using biomass waste – producer gas as an induced fuel. J Phys.: Conf Ser. 2019;1276(1):012062. doi: 10.1088/1742-6596/1276/1/012062.
  • Bhardwaj V, Mohapatra SK, Sharma S, et al. Performance and emissions characteristics of a C.I. Engine fuelled with different blends of biodiesel derived from… biomass gasification view project study of emission characteristics and noise of dual fuel engine run on blends of diesel and producer gas from biomass materials view project performance and emissions characteristics of a C.I. Engine fuelled with different blends of biodiesel derived from waste mustard oil. (2013). doi: 10.13140/2.1.5054.0328.
  • Rosa JS, Telli GD, Altafini CR, et al. Dual fuel ethanol port injection in a compression ignition diesel engine: technical analysis, environmental behavior, and economic viability. J Cleaner Prod. 2021;308:127396. doi: 10.1016/j.jclepro.2021.127396.
  • Ahamad Shaik A, Rami Reddy S, Dhana Raju V, et al. Combined influence of compression ratio and EGR on diverse characteristics of a research diesel engine fueled with waste mango seed biodiesel blend, energy sources. Part A Recover. Util Environ Eff. 2020;0:1–24. doi: 10.1080/15567036.2020.1811809.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.