87
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Infrared thermography applied for experimental investigation of thermomechanical couplings in Gum Metal

, , , , &
Pages 226-233 | Received 17 Nov 2016, Accepted 13 Jan 2017, Published online: 01 Feb 2017

References

  • Saito T, Furuta T, Hwang JH, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science. 2003;300(5618):464–467.10.1126/science.1081957
  • Kuramoto S, Furuta T, Hwang J, et al. Plastic deformation in a multifunctional Ti-Nb-Ta-Zr-O alloy. Metall Mater Trans A. 2006;37(3):657–662.
  • Kuramoto S, Furuta T, Hwang J, et al. Elastic properties of Gum Metal. Mater Sci Eng A. 2006;442(1–2):454–457.10.1016/j.msea.2005.12.089
  • Furuta T, Kuramoto S, Morris JW, et al. The mechanism of strength and deformation in Gum Metal. Scr Mater. 2013;68(10):767–772.10.1016/j.scriptamat.2013.01.027
  • Wei Q, Wang L, Fu Y, et al. Influence of oxygen content on microstructure and mechanical properties of Ti–Nb–Ta–Zr alloy. Mater Des. 2011;32(5):2934–2939.10.1016/j.matdes.2010.11.049
  • Wei LS, Kim HY, Miyazaki S. Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti–Nb–Zr–Ta–O alloys. Acta Mater. 2015;100:313–322.10.1016/j.actamat.2015.08.054
  • Besse M, Castany P, Gloriant T. Mechanisms of deformation in gum metal TNTZ-O and TNTZ titanium alloys: a comparative study on the oxygen influence. Acta Mater. 2011;59:5982–5988.10.1016/j.actamat.2011.06.006
  • Nagasako N, Asahi R, Isheim D, et al. Microscopic study of Gum-Metal alloys: a role of trace oxygen for dislocation-free deformation. Acta Mater. 2016;105:347–354.10.1016/j.actamat.2015.12.011
  • Talling RJ, Dashwood RJ, Jackson M, et al. On the mechanism of superelasticity in Gum metal. Acta Mater. 2009;57:1188–1198.10.1016/j.actamat.2008.11.013
  • Tane M, Nakano T, Kuramoto S, et al. ω Transformation in cold-worked Ti–Nb–Ta–Zr–O alloys with low body-centered cubic phase stability and its correlation with their elastic properties. Acta Mater. 2013;61(1):139–150.10.1016/j.actamat.2012.09.041
  • Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8:3888–3903.10.1016/j.actbio.2012.06.037
  • Gordin DM, Ion R, Vasilescu C, et al. Potentiality of the ‘Gum Metal’ titanium-based alloy for biomedical applications. Mater Sci Eng C. 2014;44:362–370.10.1016/j.msec.2014.08.003
  • Chrysochoos A. Infrared thermography applied to the analysis of material behaviour: a brief overview. Quant Infrared Thermogr J. 2012;9(2):193–208.10.1080/17686733.2012.746069
  • Pieczyska EA. Thermoelastic effect in austenitic steel referred to its hardening. J Theor App Mech. 1999;2(37):281–306. Ph.D thesis.
  • Pieczyska EA, Maj M, Furuta T, et al. Gum Metal – unique properties and results of initial investigation of a new titanium alloy – extended paper. In: Kleiber M, Burczyński T, Wilde K, Górski J, Winkelmann K, Smakosz Ł, editors. Advances in mechanics: theoretical, computational and interdisciplinary issues. London: Taylor & Francis Group; 2016. p. 469–472. ISBN 978-1-138-02906-4.10.1201/b20057

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.