1,448
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Multi-label classification algorithms for composite materials under infrared thermography testing

, ORCID Icon, , , , & show all
Pages 3-29 | Received 09 Jun 2022, Accepted 15 Sep 2022, Published online: 14 Oct 2022

References

  • Ciampa F, Mahmoodi P, Pinto F, et al. Recent advances in active infrared thermography for non-destructive testing of aerospace components. Sensors. 2018;18(2):609.
  • Katunin A, Dragan K, Dziendzikowski M. Damage identification in aircraft composite structures: a case study using various non-destructive testing techniques. Compos Struct. 2015;127:1–9.
  • Péronnet E, Pastor M, Huillery R, et al., Non-destructive investigation of defects in composite structures by three infrared thermographic techniques. In 15thInternational Conference on Experimental Mechanics, Porto, Portugal. 2012.
  • Montanini R. Quantitative determination of subsurface defects in a reference specimen made of Plexiglas by means of lock-in and pulse phase infrared thermography. Infrared Phys Technol. 2010;53(5):363–371.
  • Findeis D, Gryzagoridis J, Lombe C. Comparing infrared thermography and ESPI for NDE of aircraft composites. Insight - Non-Destructive Test Condition Monit. 2010;52:5.
  • Ibarra-Castanedo C, Genest M, Guibert S, et al. Inspection of aerospace materials by pulsed thermography, lock-in thermography, and vibrothermography: a comparative study. SPIE. 2007;6541:321–329.
  • Bendada A, Erchiqui F, Lamontagne M. Pulsed thermography in the evaluation of an aircraft composite using 3D thermal quadrupoles and mathematical perturbations. Inverse Problems. 2005;21(3):857–877.
  • Chen Y, Hung Y, Ng S, et al. Review and comparison of shearography and active thermography for nondestructive testing and evaluation (NdT&E). SPIE. 2009;7375:1139–1144.
  • Zalameda J, Rajic N, Winfree W. A comparison of image processing algorithms for thermal nondestructive evaluation. SPIE. 2003;5073:374–385.
  • Madruga FJ, Ibarra-Castanedo C, Conde OM, et al. Infrared thermography processing based on higher-order statistics. NDT & E Int. 2010;43(8):661–666.
  • Vavilov VP, Burleigh DD. Review of pulsed thermal NDT: physical principles, theory and data processing. NDT & E Int. 2015;73:28–52.
  • Li B, Ye L, Li E, et al. Gapped smoothing algorithm applied to defect identification using pulsed thermography. Case Stud NondestrTest Eval. 2015;30(2):171–195.
  • Guo X, Vavilov V. Pulsed thermographic evaluation of disbonds in the insulation of solid rocket motors made of elastomers. Polymer Testing. 2015;45:31–40.
  • Lopez F, Ibarra-Castanedo C, de Paulo Nicolau V, et al. Optimization of pulsed thermography inspection by partial least-squares regression. NDT & E Int. 2014;66:128–138.
  • Chang Y-S, Yan Z, Wang K-H, et al. Non-destructive testing of CFRP using pulsed thermography and multi-dimensional ensemble empirical mode decomposition. J Taiwan Inst Chem Eng. 2016;61:54–63.
  • Zhao Y, Tinsley L, Addepalli S, et al. A coefficient clustering analysis for damage assessment of composites based on pulsed thermographic inspection. NDT & E Int. 2016;83:59–67.
  • Grammatikos SA, Kordatos EZ, Matikas TE, et al., Service and maintenance damage assessment of composite structures using various modes of infrared thermography. IOP Conference Series: Materials Science and Engineering; Bristol, UK. 2015;74:012006.
  • Almond DP, Angioni SL, Pickering SG. Long pulse excitation thermographic non-destructive evaluation. NDT & E Int. 2017;87:7–14.
  • Arora V, Siddiqui JA, Mulaveesala R, et al. Pulse compression approach to nonstationary infrared thermal wave imaging for nondestructive testing of carbon fiber reinforced polymers. IEEE Sens J. 2015;15(2):663–664.
  • Ley O, Butera M, Godinez V. Inspection of composite structures using line scanning thermography. SPIE. 2012;8354:28–33.
  • Ley O, Godinez V, Line scanning thermography and its application inspecting aerospace composites. In Proceedings of the 5th International Symposium on NDT in Aerospace, Singapore, 2013.
  • Fernandes H, Zhang H, Figueiredo A, et al. Machine learning and infrared thermography for fiber orientation assessment on randomly-oriented strands parts. Sensors (Basel). 2018;18(1):288.
  • Zhang H, Fernandes H, Djupkep Dizeu FB, et al. Pulsed micro-laser line thermography on submillimeter porosity in carbon fiber reinforced polymer composites: experimental and numerical analyses for the capability of detection. Appl Opt. 2016;55(34):D1–10.
  • Khodayar F, Lopez F, Ibarra-Castanedo C, et al. Optimization of the inspection of large composite materials using robotized line scan thermography. J Nondestr Eval. 2017;36(2):32.
  • Fedala Y, Streza M, Sepulveda F, et al. Infrared lock-in thermography crack localization on metallic surfaces for industrial diagnosis. J Nondestr Eval. 2014;33(3):335–341.
  • Roemer J, Uhl T, Pieczonka L, Laser spot thermography for crack detection in aluminum structures, 7th International Symposium on NDT in Aerospace, 16. 18. Nov 2015, Bremen, Germany (AeroNDT 2015).
  • Sakagami T, Ogura K. A new flaw inspection technique based on infrared thermal images under joule effect heating. Trans Jpn Soc Mech Eng Series A. 1992;58(555):2224–2231.
  • Suzuki Y, Todoroki A, Mizutani Y, et al. Impact damage detection in CFRP using statistical analysis of resistance-temperature characteristics. J Solid Mech Mater Eng. 2011;5(1):33–43.
  • Abry JC, Bochard S, Chateauminois A, et al. In situ detection of damage in CFRP laminates by electrical resistance measurements. Compos Sci Technol. 1999;59(6):925–935.
  • Schulte K, Baron C. Load and failure analyses of CFRP laminates by means of electrical resistivity measurements. Compos Sci Technol. 1989;36(1):63–76.
  • Suzuki Y, Todoroki A, Matsuzaki R, et al. Impact-damage visualization in CFRP by resistive heating: development of a new detection method for indentations caused by impact loads. Compos Part A Appl Sci Manuf. 2012;43(1):53–64.
  • Suzuki Y, Todoroki A, Matsuzaki R, et al. Indentation-damage visualization in CFRP by resistive heating: analytical verification of the inspection of aircraft using its lightning protection systems. J Solid Mech Mater Eng. 2012;6(3):213–226.
  • Grammatikos SA, Kordatos EZ, Barkoula NM, et al. Innovative non-destructive evaluation and damage characterisation of composite aerostructures using thermography. Plast Rubber Compos. 2011;40(6–7):342–348.
  • Oswald-Tranta B. Detection and characterisation of short fatigue cracks by inductive thermography. Quant Infrared Thermogr J. 2022;19:239–260.
  • Liu K, Huang K, Sfarra S, et al. Factor analysis thermography for defect detection of panel paintings. Quant Infrared Thermogr J. 2021;0:1–13.
  • Kim C, Park G, Jang H, et al. Automated classification of thermal defects in the building envelope using thermal and visible images. Quant Infrared Thermogr J. 2022;0:1–17.
  • Saeed N, Abdulrahman Y, Amer S, et al. Experimentally validated defect depth estimation using artificial neural network in pulsed thermography. Infrared Phys Technol. 2019;98:192–200.
  • Saeed N, Omar MA, Abdulrahman Y. A neural network approach for quantifying defects depth, for nondestructive testing thermograms. Infrared Phys Technol. 2018;94:55–64.
  • Erazo-Aux J, Loaiza-Correa H, Restrepo-Giron AD, et al. Thermal imaging dataset from composite material academic samples inspected by pulsed thermography. Data BR. 2020;32:106313.
  • FLIR SystemsHigh Performance MWIR INSB Camera. Flir X6900sc. [ accessed on Sep 12, 2021]. Available online: https://www.flir.com/products/x6900sc-mwir/
  • Szul T, Tabor S, Pancerz K. Application of the BORUTA algorithm to input data selection for a model based on rough set theory (RST) to prediction energy consumption for building heating. Energies. 2021;14:2779.
  • Zhang M, Zhou Z. A review on multi-label learning algorithms. IEEE Trans Knowledge Data Eng. 2014;26:1819–1837.
  • Pushpa M, Karpagavalli S. Multi-label classification: problem transformation methods in tamil phoneme classification. Procedia Comput Sci. 2017;115:572–579.
  • Adeleke A, Noor A, Shamsul S, et al. An improved multi-label classifier chain method for automated text classification. Int J Adv Comput Sci Appl. 2021. DOI:http://dx.doi.org/10.14569/IJACSA.2021.0120352
  • Elena M, Robin S, Jose B, et al. Dependent binary relevance models for multi-label classification. Pattern Recogn. 2014;47:1494–1508.
  • Mohri M, Rostamizadeh A, Talwalkar A, et al. Foundations of machine learning (Adaptive computation and machine learning series). London (UK): The MIT Press; Aug. 2012.
  • Bonaccorso G. Machine learning algorithms: a reference guide to popular algorithms for data science and machine learning. Birmingham (UK): Packt Publishing; Jul. 2017.
  • Watt J, Borhani R, Katsaggelos AK. Machine learning refined, foundations, algorithms, and applications. 1st ed. Cambridge (UK): Cambridge University Press; Nov. 2016.