349
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Medical infrared thermal image based fatty liver classification using machine and deep learning

ORCID Icon & ORCID Icon
Pages 102-119 | Received 18 Jul 2022, Accepted 10 Dec 2022, Published online: 10 Jan 2023

References

  • Sevastianos VA, Hadziyannis SJ. Nonalcoholic fatty liver disease: from clinical recognition to treatment. Expert Rev Gastroenterol Hepatol. 2008;2(1):59–79.
  • Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15(1):11–20. DOI:10.1038/nrgastro.2017.109
  • Vos T, Lim SS, Abbafati C, et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. Oct 2020;396(10258):1204–1222.
  • Schwenzer NF, Springer F, Schraml C, et al. Non-invasive assessment and quantification of liver steatosis by ultrasound, computed tomography and magnetic resonance. J Hepatol. 2009;51(3):433–445.
  • Ring EFJ, Ammer K. Infrared thermal imaging in medicine. Physiol Meas. 2012 Mar;33(3):R33–46.
  • Gogoi UR, Bhowmik MK, Ghosh AK, et al. Discriminative feature selection for breast abnormality detection and accurate classification of thermograms. 2017 International Conference on Innovations in Electronics, Signal Processing and Communication (IESC), Shillong, India; 2017 Apr. p. 39–44.
  • Ghayoumi Zadeh H, Haddadnia J, Rahmani Seryasat O, et al. Segmenting breast cancerous regions in thermal images using fuzzy active contours. EXCLI J. 2016;15:532–550.
  • Gogoi UR, Majumdar G, Bhowmik MK, et al. Breast abnormality detection through statistical feature analysis using infrared thermograms. 2015 International Symposium on Advanced Computing and Communication (ISACC), Silchar, India; 2015 Sep. p. 258–265.
  • Morales-Cervantes A, Kolosovas-Machuca ES, Guevara E, et al. Evaluation of breast cancer by infrared thermography. Res Comput Sci. 2020;149(5):137–149.
  • Gogoi UR, Majumdar G, Bhowmik MK, et al. Evaluating the efficiency of infrared breast thermography for early breast cancer risk prediction in asymptomatic population. Infrared Phys Technol. 2019;99(September 2018):201–211.
  • Ng EY-K, Fok SC, Peh YC, et al. Computerized detection of breast cancer with artificial intelligence and thermograms. J Med Eng Technol. 2002 Jan;26(4):152–157.
  • Ring E. The historical development of thermometry and thermal imaging in medicine. J Med Eng Technol. 2006;30(4):192–198.
  • Anbar M. Clinical thermal imaging today. IEEE Eng Med Biol Mag. 1998;17(4):25–33.
  • Hooshmand H, Hashmi M, Phillips EM. Infrared thermal imaging as a tool in pain management - an 11 year study, part II: clinical applications. Thermol Int. 2001;11(3):1–13.
  • Nowakowski A, Kaczmarek M. Active dynamic thermography - problems of implementation in medical diagnostics. Quant Infrared Thermogr J. 2011;8(1):89–106.
  • Balageas DL. A brief history of QIRT concept, structures and community. Quant Infrared Thermogr J. 2016;13(1):109–125.
  • Ervural S, Ceylan M. Thermogram classification using deep siamese network for neonatal disease detection with limited data. Quant Infrared Thermogr J. 2021 Dec;19(5):1–19.
  • Thiruvengadam J, Mariamichael A. Model-based computer-aided method for diagnosis of cardiovascular disease using IR thermogram. Biomed Res. 2019;30(1). DOI:10.35841/biomedicalresearch.30-19-004
  • Vardasca R, Magalhaes C, Seixas A, et al. Diabetic foot monitoring using dynamic thermography and AI classifiers. Proceedings of QIRT Asia 2019, Tokyo, Japan; 2019. p. 0–4.
  • Samant P, Agarwal R. Machine learning techniques for medical diagnosis of diabetes using iris images. Comput Methods Programs Biomed. 2018;157:121–128.
  • Nagori A, Dhingra LS, Bhatnagar A, et al. Predicting hemodynamic shock from thermal images using machine learning. Sci Rep. 2019;9(1):1–9.
  • Martínez-Jiménez MA, Ramirez-GarciaLuna JL, Kolosovas-Machuca ES, et al. Development and validation of an algorithm to predict the treatment modality of burn wounds using thermographic scans: prospective cohort study. PLoS ONE. 2018;13(11):1–16.
  • Vardasca R, Magalhaes C, Mendes J. Biomedical applications of infrared thermal imaging: current state of machine learning classification. Proceedings. 2019;27(1):46.
  • Cho Y, Julier SJ, Bianchi-Berthouze N. Instant stress: detection of perceived mental stress through smartphone photoplethysmography and thermal imaging. JMIR Ment Heal. 2019;6(4):e10140.
  • Wang S, Pan B, Chen H, et al. Thermal augmented expression recognition. IEEE Trans Cybern. 2018;48(7):2203–2214.
  • Brzezinski RY, Levin-Kotler L, Rabin N, et al. Automated thermal imaging for the detection of fatty liver disease. Sci Rep. 2020;10(1):1–24. DOI:10.1038/s41598-020-72433-5
  • Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–66.
  • Karaciğer İltihabı: Semptomlar ve Doğru Beslenme. https://sagligabiradim.com/karaciger-iltihabi-semptomlar-uygun-diyet/.
  • Gonzalez RC, Woods RE. Digital image processing(second edition). 2nd ed. New Jersey, USA: Prentice-Hall; 2002.
  • Özdil A, Yılmaz B. Automatic body part and pose detection in medical infrared thermal images. Quant Infrared Thermogr J. 2021 Jun;19(4):223–238.
  • Matlab, MATLAB. 2021.
  • Alzubaidi L, Zhang J, Humaidi AJ, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021;8(1):53. DOI:10.1186/s40537-021-00444-8
  • Karamizadeh S, Abdullah SM, Manaf AA, et al. An overview of principal component analysis. J Signal Inf Process. 2013;04(03):173–175.
  • García-Alonso CR, Pérez-Naranjo LM, Fernández-Caballero JC. Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms. Ann Oper Res. 2014;219(1):187–202.
  • Hall M, Frank E, Holmes G, et al. The weka data mining software. ACM SIGKDD Explor Newsl. 2009 Nov;11(1):10–18.
  • Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952 Dec;47(260):583–621.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.