98
Views
0
CrossRef citations to date
0
Altmetric
Research Article

IR-GAN: improved generative adversarial networks for infrared breast image segmentation

ORCID Icon, &
Received 19 Jul 2023, Accepted 09 Dec 2023, Published online: 28 Dec 2023

References

  • Hassan NM, Hamad S, Mahar K. Mammogram breast cancer CAD systems for mass detection and classification: a review. Multimed Tools Appl. 2022;81(14):20043–20075. doi: 10.1007/s11042-022-12332-1
  • Subasi A, Kandpal AD, Raj KA, et al. Breast cancer detection from mammograms using artificial intelligence. In: Applications of artificial intelligence in medical imaging. Elsevier; 2022. p. 109–136. doi: 10.1016/B978-0-443-18450-5.00005-0
  • Wilson AN, Gupta KA, Koduru BH, et al. Recent advances in thermal imaging and its applications using machine learning: a review. IEEE Sensors J. 2023 Feb 15;23(4):3395–3407.
  • Dalmia, A, Kakileti, ST, Manjunath G. Exploring deep learning networks for tumour segmentation in infrared images. Quant Infrared Thermogr J. 2020;17(3):153–168. doi: 10.1080/17686733.2019.1619355
  • Özdil A, Yilmaz B. Medical infrared thermal image based fatty liver classification using machine and deep learning. Quant Infrared Thermogr J. 2023:1–18. doi: 10.1080/17686733.2022.2158678
  • Hesamian MH, Jia W, He X, et al. Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging. 2019;32(4):582–596. doi: 10.1007/s10278-019-00227-x
  • Antonelli L, De Simone V, di Serafino D. A view of computational models for image segmentation. Ann Dell’Universita’ di Ferrara. 2022;68(2):277–294. doi:10.1007/s11565-022-00417-6
  • Usha Rani Gogoi MKB, Majumdar G. MMSHRs: a morphology model of suspicious hyperthermic regions for degree of severity prediction from breast thermograms. Quant Infrared Thermogr J. 2023;20(4):157–181. doi:10.1080/17686733.2022.2097614
  • Sánchez-Ruiz D, Olmos-Pineda I, Olvera-López JA. Automatic region of interest segmentation for breast thermogram image classification. Pattern Recognit Lett. 2020;135:72–81. doi:10.1016/j.patrec.2020.03.025
  • Mahnoosh Zarei AR, Hamidpour SSF. Breast cancer segmentation based on modified Gaussian mean shift algorithm for infrared thermal images. Comput Methods Biomech Biomed Eng Imaging Vis. 2021;9(6):574–580. doi:10.1080/21681163.2021.1897884
  • Sharma R, Sharma JB, Maheshwari R, et al. Early anomaly prediction in breast thermogram by hybrid model consisting of superpixel segmentation, sparse feature descriptors and extreme learning machine classifier. Biomed Signal Process Control. 2021;70:103011. doi:10.1016/j.bspc.2021.103011
  • Hakim AS, Awale RN. Extraction of hottest blood vessels from breast thermograms using state-of-the-art image segmentation methods. Quant Infrared Thermogr J. 2022;19(5):347–365. doi: 10.1080/17686733.2021.1974209
  • Venkatachalam N, Shanmugam L, Heltin GC, et al. Enhanced segmentation of inflamed ROI to improve the accuracy of identifying benign and malignant cases in breast thermogram. J Oncol. 2021;2021:1–17. Hindawi. doi: 10.1155/2021/5566853
  • Gupta S, Sadiq M, Gupta M, et al. Semi-automatic segmentation of breast cancer for mammograms based on watershed segmentation. In: Proceedings of the 5th national conference for nation development; New Delhi, India; 2011.
  • Thamil Selvi J, Priya E, Rajinikanth V. Signal and Image Processing Techniques for the Development of Intelligent Healthcare Systems. Singapore: Springer Nature; 2021. p. 87–102. doi:10.1007/978-981-15-6141-2_5
  • Houssein EH, Emam MM, Ali AA. An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm. Expert Syst Appl. 2021;185:115651. doi:10.1016/j.eswa.2021.115651
  • Raja N, Rajinikanth V, Fernandes SL, et al. Segmentation of breast thermal images using Kapur’s entropy and hidden Markov random field. J Med Imaging Heal Inf. 2017;7(8):1825–1829. doi:10.1166/jmihi.2017.2267
  • Li Y, Xiao N, Ouyang W. Improved generative adversarial networks with reconstruction loss. Neurocomputing. 2019;323:363–372. doi:10.1016/j.neucom.2018.10.014
  • Li C, Xia W, Yan Y, et al. Segmenting objects in day and night: edge-conditioned CNN for thermal image semantic segmentation. IEEE Trans Neural Networks Learn Syst. 2021;32(7):3069–3082. doi: 10.1109/TNNLS.2020.3009373
  • Kakileti ST, Manjunath G, Madhu HJ. Cascaded CNN for view independent breast segmentation in thermal images. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Berlin, Germany; 2019. p. 6294–6297.
  • Janssens O, Schulz R, Slavkovikj V, et al. Thermal image based fault diagnosis for rotating machinery. Infrared Phys & Technol. 2015;73:78–87. doi:10.1016/j.infrared.2015.09.004
  • Liu X, Song L, Liu S, et al. A review of deep-learning-based medical image segmentation methods. Sustainability. 2021;13(3):1224. doi:10.3390/su13031224
  • Protopapadakis E, Doulamis A, Doulamis N, et al. Stacked autoencoders driven by semi-supervised learning for building extraction from near infrared remote sens imagery. Remote Sens. 2021;13(3):371. doi: 10.3390/rs13030371
  • Lou A, Guan S, Loew M. Cfpnet-m: a light-weight encoder-decoder based network for multimodal biomedical image real-time segmentation. Comput Biol Med. 2023;154:106579. doi:10.1016/j.compbiomed.2023.106579
  • Tayel MB, Elbagoury AM. Breast infrared thermography segmentation based on adaptive tuning of a fully convolutional network. Curr Med Imaging. 2020;16(5):611–621. doi: 10.2174/1573405615666190503142031
  • Hou J, Zhang D, Wu W, et al. A generative adversarial network for infrared and visible image fusion based on semantic segmentation. Entropy. 2021;23(3):376. doi: 10.3390/e23030376
  • Mambou SJ, Maresova P, Krejcar O, et al. Breast cancer detection using infrared thermal imaging and a deep learning model. Sensors. 2018;18(9):2799. doi: 10.3390/s18092799
  • Sánchez-Cauce R, Pérez-Martín J, Luque M. Multi-input convolutional neural network for breast cancer detection using thermal images and clinical data. Comput Methods Programs Biomed. 2021;204:106045. doi: 10.1016/j.cmpb.2021.106045
  • Allugunti VR. Breast cancer detection based on thermographic images using machine learning and deep learning algorithms. Int J Eng Comput Sci. 2022;4(1):49–56. doi:10.33545/26633582.2022.v4.i1a.68
  • Zuluaga-Gomez J, Al Masry Z, Benaggoune K, et al. A CNN-based methodology for breast cancer diagnosis using thermal images. Comput Methods Biomech Biomed Eng. 2021;9(2):131–145. doi: 10.1080/21681163.2020.1824685
  • Gomathi P, Muniraj C, Periasamy PS. Digital infrared thermal imaging system based breast cancer diagnosis using 4D U-Net segmentation. Biomed Signal Process Control. 2023;85:104792. doi:10.1016/j.bspc.2023.104792
  • Carlos de Carvalho E, Martins Coelho A, Conci A, et al. U-Net convolutional neural networks for breast IR imaging segmentation on frontal and lateral view. Comput Methods Biomech Biomed Eng Imaging Vis. 2023 May;11(3):311–316. doi: 10.1080/21681163.2022.2040053
  • Olota M, Alsadoon A, Alsadoon OH, et al. Modified anisotropic diffusion and level-set segmentation for breast cancer. Multimed Tools Appl. 2023;1–23. doi: 10.1007/s11042-023-16021-5
  • da Queiroz KFFC, de Queiroz Júnior JRA, Dourado H, et al. Automatic segmentation of region of interest for breast thermographic image classification. Res Biomed Eng. 2023;39(1):199–208. doi:10.1007/s42600-023-00265-z
  • Etehadtavakol M, Emrani Z, Ng EYK. Improved extraction of the extreme thermal regions of breast IR images. In: Pal K, Ari S, Bit A, Bhattacharyya S, editors. Advanced methods in biomedical signal processing and analysis. London: Elsevier; 2023. p. 243–256. doi:10.1016/C2020-0-02228-0
  • Venkatachalam N, Shanmugam L, Heltin Genitha C, et al. Automated breast boundary segmentation to improve the accuracy of identifying abnormalities in breast thermograms. IETE J Res. 2023;1–10. doi: 10.1080/03772063.2023.2194277
  • Senalp FM, Ceylan M. A new approach for super-resolution and classification applications on neonatal thermal images. Quant Infrared Thermogr J. 1–18. doi: 10.1080/17686733.2023.2179282
  • Tian L, Wang Z, Liu W, et al. An improved generative adversarial network with modified loss function for crack detection in electromagnetic nondestructive testing. Complex Intell Syst. 2022;8(1):467–476. doi: 10.1007/s40747-021-00477-9
  • Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM. 2020;63(11):139–144. doi: 10.1145/3422622
  • Yuan L, Yu S, Yang Z, et al. A data balancing approach based on generative adversarial network. Futur Gener Comput Syst. 2023;141:768–776. doi:10.1016/j.future.2022.12.024
  • Ruan Q, Wu Q, Yao J, et al. An efficient tongue segmentation model based on u-net framework. Int J Pattern Recognit Artif Intell. 2021;35(16):2154035. doi:10.1142/S0218001421540355
  • Drozdzal M, Vorontsov E, Chartrand G, et al. The importance of skip connections in biomedical image segmentation. In: Gustavo C, editor. International workshop on deep learning in medical image analysis, international workshop on large-scale annotation of biomedical data and expert label synthesis. Vol. 1. Cham, Switzerland: Springer; 2016. p. 179–187. doi:10.1007/978-3-319-46976-8
  • Demir U, Unal G. Patch-based image inpainting with generative adversarial networks. arXiv Prepr. 2018;1:1–28. arXiv180307422.
  • Misra D. Mish: a self regularized non-monotonic neural activation function. arXiv Prepr arXiv190808681. 2019.
  • Yarotsky D. Error bounds for approximations with deep ReLU networks. Neural Networks. 2017;94:103–114. doi:10.1016/j.neunet.2017.07.002
  • da Silva LF, Saade DCM, Sequeiros GO, et al. A new database for breast research with infrared image. J Med Imaging Heal Informatics. 2014;4(1):92–100. doi: 10.1166/jmihi.2014.1226
  • Krishna S, George B. An affordable solution for the recognition of abnormality in breast thermogram. Multimed Tools Appl. 2021;80(18):28303–28328. doi:10.1007/s11042-021-11082-w
  • Dey A, Rajan S. Red-plane Asymmetry Analysis of Breast Thermograms for Cancer Detection. 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA); Messina, Italy; 2022. p. 1–6. doi:10.1109/MeMeA54994.2022.9856520
  • Rosca M, Lakshminarayanan B, Warde-Farley D, et al. Variational approaches for auto-encoding generative adversarial networks. arXiv Prepr arXiv170604987. 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.