65
Views
0
CrossRef citations to date
0
Altmetric
Articles

Multi-timescale analysis of fatigue crack growth on interfaces via cohesive-zone models

References

  • Abdelmoula, R., Marigo, J. J., & Weller, T. (2009a). Construction of a fatigue law from a cohesive force model: The mode III case. Comptes Rendus Mécanique, 337, 53–59.10.1016/j.crme.2008.12.001
  • Abdelmoula, R., Marigo, J. J., & Weller, T. (2009b). Construction of fatigue laws from cohesive forces models: The mode I case. Comptes Rendus Mécanique, 337, 166–172.10.1016/j.crme.2009.04.002
  • Abdul-Baqi, A., Schreurs, P. J. G., & Geers, M. G. D. (2005). Fatigue damage modeling in solder interconnects using a cohesive zone approach. International Journal of Solids and Structures, 42, 927–942.10.1016/j.ijsolstr.2004.07.026
  • Alfano, G., & Crisfield, M. A. (2001). Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. International Journal for Numerical Methods in Engineering, 50, 1701–1736.10.1002/(ISSN)1097-0207
  • Bouvard, J. L., Chaboche, J. L., Feyel, F., & Gallerneau, F. (2009). A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal superalloys. International Journal of Fatigue, 31, 868–879.10.1016/j.ijfatigue.2008.11.002
  • Fish, J., & Oskay, C. (2005). A nonlocal multiscale fatigue model. Mechanics of Advanced Materials and Structures, 12, 485–500.10.1080/15376490500259319
  • Harper, P. W., & Hallett, S. R. (2010). A fatigue degradation law for cohesive interface elements – Development and application to composite materials. International Journal of Fatigue, 32, 1774–1787.10.1016/j.ijfatigue.2010.04.006
  • Harris, B. (Ed.). (2003). Fatigue in composites. Cambridge: Woodhead.
  • Jaubert, A., & Marigo, J. J. (2006). Justification of paris-type fatigue laws from cohesive forces model via a variational approach. Continuum Mechanics and Thermodynamics, 18, 23–45.10.1007/s00161-006-0023-8
  • Kawashita, L. F., & Hallett, S. R. (2012). A crack tip tracking algorithm for cohesive interface element analysis of fatigue delamination propagation in composite materials. International Journal of Solids and Structures, 49, 2898–2913.10.1016/j.ijsolstr.2012.03.034
  • Landry, B., & LaPlante, G. (2012). Modeling delamination growth in composites under fatigue loadings of varying amplitudes. Composites Part B: Engineering, 43, 533–541.10.1016/j.compositesb.2011.08.020
  • Maiti, S., & Geubelle, P. H. (2005). A cohesive model for fatigue failure of polymers. Engineering Fracture Mechanics, 72, 691–708.10.1016/j.engfracmech.2004.06.005
  • Marigo, J. J. (1985). Modelling of brittle and fatigue damage for elastic material by growth of microvoids. Engineering Fracture Mechanics, 21, 861–874.10.1016/0013-7944(85)90093-1
  • May, M., & Hallett, S. R. (2010). A combined model for initiation and propagation of damage under fatigue loading for cohesive interface elements. Composites Part A: Applied Science and Manufacturing, 41, 1787–1796.10.1016/j.compositesa.2010.08.015
  • Mi, Y., Crisfield, M. A., Davies, G. A. O., & Hellweg, H. B. (1998). Progressive delamination using interface elements. Journal of Composite Materials, 32, 1246–1272.10.1177/002199839803201401
  • Muñoz, J., Robinson, P., & Galvanetto, U. (2006). On the numerical simulation of fatigue driven delamination with interface elements. International Journal of Fracture, 28, 1136–1146.
  • Naghipour, P., Bartsch, M., & Voggenreiter, H. (2011). Simulation and experimental validation of mixed mode delamination in multidirectional CF/PEEK laminates under fatigue loading. International Journal of Solids and Structures, 48, 1070–1081.10.1016/j.ijsolstr.2010.12.012
  • Nguyen, O., Repetto, E. A., Ortiz, M., & Radovitzky, R. A. (2001). A cohesive model of fatigue crack growth. International Journal of Fracture, 110, 351–369.10.1023/A:1010839522926
  • Paris, P. C., & Erdogan, F. A. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering, 85, 528–534.10.1115/1.3656900
  • Peerlings, R. H. J., Brekelmans, W. A. M., de Borst, R., & Geers, M. G. D. (2000). Gradient-enhanced damage modelling of high-cycle fatigue. International Journal for Numerical Methods in Engineering, 49, 1547–1569.10.1002/(ISSN)1097-0207
  • Robinson, P., Galvanetto, U., Bellucci, G., Tumino, D., & Violeau, D. (2006). Numerical simulation of fatigue-driven delamination using interface elements. International Journal for Numerical Methods in Engineering, 63, 1824–1848.
  • Roe, K. L., & Siegmund, T. (2003). An irreversible cohesive zone model for interface fatigue crack growth simulation. Engineering Fracture Mechanics, 70, 209–232.10.1016/S0013-7944(02)00034-6
  • Serebrinsky, S., & Ortiz, M. (2005). A hysteretic cohesive-law model of fatigue-crack nucleation. Scripta Materialia, 53, 1193–1196.10.1016/j.scriptamat.2005.07.015
  • Shyanbhog, A. (1998). Investigation of debonding in adhesive joints due to fatigue (MSc Thesis). Brunel University, Uxbridge, UK.
  • Suresh, S. (1998). Fatigue of materials. Cambridge: Cambridge University Press.10.1017/CBO9780511806575
  • Turon, A., Costa, J., Camanho, P. P., & Dávila, C. G. (2007). Simulation of delamination in composites under high-cycle fatigue. Composites Part A: Applied Science and Manufacturing, 38, 2270–2282.10.1016/j.compositesa.2006.11.009
  • Ural, A., Krishnan, V. R., & Papoulia, K. D. (2009). A cohesive zone model for fatigue crack growth allowing for crack retardation. International Journal of Solids and Structures, 46, 2453–2462.10.1016/j.ijsolstr.2009.01.031
  • Violeau, D. (2001). Numerical analysis of delamination fatigue in composites via a cohesive zone model (Master’s degree final report 99-05). ENS Cashan.
  • Yang, B., Mall, S., & Ravi-Chandar, K. (2001). A cohesive zone model for fatigue crack growth in quasibrittle materials. International Journal of Solids and Structures, 38, 3927–3944.10.1016/S0020-7683(00)00253-5
  • Yang, Q. D., Shim, D. J., & Spearing, S. M. (2004). A cohesive zone model for low cycle fatigue life prediction of solder joints. Microelectronic Engineering, 75, 85–95.10.1016/j.mee.2003.11.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.