65
Views
0
CrossRef citations to date
0
Altmetric
Articles

Fractional order generalised thermoelasticity to an infinite body with a cylindrical cavity and variable material properties

, &

References

  • Ackerman, C. C., & Guyer, R. A. (1968). Temperature pulses in dielectric solids. Annals of Physics, 50, 128–185.10.1016/0003-4916(68)90320-5
  • Bagri, A., & Eslami, M. R. (2007a). A unified generalized thermoelasticity: Solution for cylinders and spheres. International Journal of Mechanical Sciences, 49, 1325–1335.10.1016/j.ijmecsci.2007.04.004
  • Bagri, A., & Eslami, M. R. (2007b). A unified generalized thermoelasticity formulation: Application to thick functionally graded cylinders. Journal of Thermal Stresses, 30, 911–930.10.1080/01495730701496079
  • Banik, S., Mallik, S. H., & Kanoria, M. (2007). Thermoelastic interaction with energy dissipation in an infinite solid with distributed periodically varying heat sources. International Journal of Pure and Applied Mathematics, 34, 231–245.
  • Banik, S., Mallik, S. H., & Kanoria, M. (2009). A unified generalized thermoelasticity formulation: Application to an infinite body with a cylindrical cavity and variable material properties. International Journal of Applied Mechanics and Engineering, 14, 113–126.
  • Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent-II. Geophysical Journal International, 13, 529–539.10.1111/gji.1967.13.issue-5
  • Cattaneo, C. (1948). On the conduction of heat. Atti. Sem. Mat. Fis. Univ. Modena, 3, 3–21.
  • Chadwick, P. (1960). Thermoelasticity, the dynamic theory: Progress in solid mechanics. In I. N. Sneddon & R. Hill (Eds.), Progress in Solid Mechanics, (Vol. 1, pp. 263–328). Amsterdam: North-Holland.
  • Chandrasekharaiah, D. S. (1996). A uniqueness theorem in the theory of thermoelasticity without energy dissipation. Journal of Thermal Stresses, 19, 267–272.10.1080/01495739608946173
  • Das, P., Kar, A., & Kanoria, M. (2013). Analysis of magneto-thermoelastic response in a transversely isotropic hollow cylinder under thermal shock with three-phase-lag effect. Journal of Thermal Stresses, 36, 239–258.10.1080/01495739.2013.765180
  • Debnath, L., & Bhatta, D. (2007). Integral transforms and their applications. London, New York: Chapman and Hall/CRC, Taylor and Francis Group.
  • El-Karamany, A. S., & Ezzat, M. A. (2011a). Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity. Journal of Thermal Stresses, 34, 264–284.10.1080/01495739.2010.545741
  • El-Karamany, A. S., & Ezzat, M. A. (2011b). On fractional thermoelasticity. Mathematics and Mechanics of Solids, 16, 334–346.10.1177/1081286510397228
  • El-Karamany, A. S., & Ezzat, M. A. (2011c). Fractional order theory of a perfect conducting thermoelastic medium. The Canadian Journal of Physics, 89, 311–318.
  • Erbay, S., & Suhubi, E. S. (1986). Longitudinal wave propagation in a generalized thermoelastic cylinder. Journal of Thermal Stresses, 9, 279–295.10.1080/01495738608961904
  • Ezzat, M. A., Othman, M. I., & El-Karamany, A. S. (2001). The dependence of the modulus of elasticity on the reference temperature in generalized thermoelasticity. Journal of Thermal Stresses, 24, 1159–1176.10.1080/014957301753251737
  • Fujita, Y. (1990). Integrodifferential equation which interpolates the heat equation and wave equation (II). Osaka Journal of Mathematics, 27, 797–804.
  • Ghosh, M., & Kanoria, M. (2010). Dynamical response in a functionally graded spherically isotropic hollow sphere with temperature dependent elastic parameters. Journal of Thermal Stresses, 33, 459–484.
  • Gorenflo, R., & Mainardi, F. (1997). Fractional calculus: Integral and differential equations of fractional orders, fractals and fractional calculus in continuum mechanics (Vol. 378, pp. 223–276). Wien and New York: Springer Verlag.
  • Gorenflo, R., & Vessella, S. (1991). Abel integral equations (Vol. 1461). Lecture notes in mathematics. Berlin: Springer.
  • Green, A. E., & Lindsay, K. A. (1972). Thermoelasticity. Journal of Elasticity, 2, 1–7.10.1007/BF00045689
  • Green, A. E., & Naghdi, P. M. (1992a). A re-examination of the basic results of thermomechanics. Proceedings of the Royal Society of London Series A, 432, 171–194.
  • Green, A. E., & Naghdi, P. M. (1992b). On undamped heat waves in an elastic solid. Journal of Thermal Stresses, 15, 252–264.
  • Green, A. E., & Naghdi, P. M. (1993). Thermoelasticity without energy dissipation. Journal of Elasticity, 31, 189–208.10.1007/BF00044969
  • Hetnarski, R. B., & Eslami, M. R. (2009). Thermal stresses: Advanced theory and applications. New York, NY: Springer.
  • Hetnarski, R. B., & Ignaczak, J. (1993). Generalized thermoelasticity: Closed-form solutions. Journal of Thermal Stresses, 16, 473–498.10.1080/01495739308946241
  • Hilfer, R. (2000). Application of fraction calculus in physics. Singapore: World Scientific.
  • Honig, G., & Hirdes, U. (1984). A method for the numerical inversion of Laplace transforms. Journal of Computational and Applied Mathematics, 10, 113–132.10.1016/0377-0427(84)90075-X
  • Ignaczak, J., & Ostoja-Starzewski, M. (2010). Thermo-elasticity with finite wave speeds. New York, NY: Oxford University Press.
  • Islam, M., & Kanoria, M. (2011). One-dimensional problem of a fractional order two temperature thermopiezoelasticity. Mathematics and Mechanics of Solids, 1–22. doi: 10.1177/1081286513482605
  • Islam, M., Mallik, S. H., & Kanoria, M. (2011). Dynamic response in two-dimensional transversely isotropic thick plate with spatially varying heat sources and body forces. Applied Mathematics and Mechanics, 32, 1315–1332.10.1007/s10483-011-1502-6
  • Jumarie, G. (2010). Derivation and solutions of some fractional Black–Scholes equations in coarse-grained space and time. Application to Merton’s optimal portfolio. Computers & Mathematics with Applications, 59, 1142–1164.10.1016/j.camwa.2009.05.015
  • Kar, A., & Kanoria, M. (2007). Thermo-elastic interaction with energy dissipation in an unbounded body with a spherical hole. International Journal of Solids and Structures, 44, 2961–2971.10.1016/j.ijsolstr.2006.08.030
  • Kar, A., & Kanoria, M. (2009). Generalized thermoelastic problem of a spherical shell under thermal shock. European Journal of Pure and Applied Mathematics, 2, 125–146.
  • Kimmich, R. (2002). Strange kinetics, porous media, and NMR. Journal of Chemical Physics, 284, 243–285.
  • Lord, H. W., & Shulman, Y. (1967). A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 15, 299–309.10.1016/0022-5096(67)90024-5
  • Mainardi, F. (1997). Fractional calculus: Some basic problems in continuum and statistical mechanics. In A. Carpinteri & F. Mainardi (Eds.), Fractals and fractional calculus in continuum mechanics (pp. 291–348). New York, NY: Springer.10.1007/978-3-7091-2664-6
  • Mainardi, F., & Gorenflo, R. (2000). On Mittag-Leffler-type functions in fractional evolution processes. Journal of Computational and Applied Mathematics, 118, 283–299.10.1016/S0377-0427(00)00294-6
  • Mallik, S. H., & Kanoria, M. (2006). Effect on rotation on thermoelastic interaction with and without energy dissipation in an unbounded medium due to heat source – An eigenvalue approach. Far East Journal of Applied Mathematics, 23, 147–167.
  • Narayanmurti, V., & Dynes, R. C. (1972). Observation of second sound in bismuth. Physical Review Letters, 28, 1461–1465.10.1103/PhysRevLett.28.1461
  • Podlubny, I. (1999). Fractional differential equations. New York, NY: Academic Press.
  • Povstenko, Y. Z. (2011). Fractional Catteneo-type equations and generalized thermoelasticity. Journal of Thermal Stresses, 34, 94–114.
  • Rogers, S. J. (1971). Transport of heat and approach to second sound in some isotopically pure alkali-halide crystals. Physical Review B, 3, 1440–1457.10.1103/PhysRevB.3.1440
  • Sherief, H. H., El-Sayed, A., & Abd El-Latief, A. (2010). Fractional order theory of thermoelasticity. International Journal of Solids and Structures, 47, 269–275.10.1016/j.ijsolstr.2009.09.034
  • Sur, A., & Kanoria, M. (2012). Fractional order two-temperature thermoelasticity with finite wave speed. Acta Mechanica, 223, 2685–2701.10.1007/s00707-012-0736-7
  • Youssef, H. M. (2010). Theory of fractional order generalized thermoelasticity. Journal of Heat Transfer (ASME), 132, 1–7.
  • Zenkour, A. M., & Abouelregal, A. E. (2014). State-space approach for an infinite medium with a spherical cavity based upon two-temperature generalized thermoelasticity theory and fractional heat conduction. Zeitschrift für angewandte Mathematik und Physik, 65, 149–164.10.1007/s00033-013-0313-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.