157
Views
0
CrossRef citations to date
0
Altmetric
Articles

Near wall motion of undulatory swimmers in non-Newtonian fluids

&
Pages 44-60 | Received 13 Sep 2016, Accepted 30 Oct 2016, Published online: 03 Apr 2017

References

  • Ardekani, A., Dabiri, S., & Rangel, R. (2008). Collision of multi-particle and general shape objects in a viscous fluid. Journal of Computational Physics, 227, 10094–10107.
  • Ardekani, A., Joseph, D., Dunn-Rankin, D., & Rangel, R. (2009). Particle-wall collision in a viscoelastic fluid. Journal of Fluid Mechanics, 633, 475–483.
  • Ardekani, A., Rangel, R., & Joseph, D. (2007). Motion of a sphere normal to a wall in a second-order fluid. Journal of Fluid Mechanics, 587, 163–172.
  • Berke, A. P., Turner, L., Berg, H. C., & Lauga, E. (2008). Hydrodynamic attraction of swimming microorganisms by surfaces. Physical Review Letters, 101, 038102-1–038102-4.
  • Bird, R. B., Armstrong, R. C. & Hassager, O. (1987). Dynamics of polymeric liquids. Vol. 1: Fluid mechanics. New York, NY: John Wiley and Sons Inc..
  • Carreau, P. J., De Kee, D., & Chhabra, R. P. (1997). Rheology of polymeric systems: Principles and applications. Munich: Hanser Publishers.
  • Chrispell, J., Fauci, L., & Shelley, M. (2013). An actuated elastic sheet interacting with passive and active structures in a viscoelastic fluid. Physics of Fluids, 25, 013103-1–013103-16.
  • Curtis, M., Kirkman-Brown, J., Connolly, T., & Gaffney, E. (2012). Modelling a tethered mammalian sperm cell undergoing hyperactivation. Journal of Theoretical Biology, 309, 1–10.
  • Dabiri, S., & Bhuvankar, P. (2016). Scaling law for bubbles rising near vertical walls. Physics of Fluids, 28, 062101-1–062101-13.
  • Dabiri, S., Doostmohammadi, A., Bayareh, M., & Ardekani, A. (2015). Rising motion of a swarm of drops in a linearly stratified fluid. International Journal of Multiphase Flow, 69, 8–17.
  • Dabiri, S., Lu, J., & Tryggvason, G. (2013). Transition between regimes of a vertical channel bubbly upflow due to bubble deformability. Physics of Fluids, 25, 102110-1–102110-12.
  • Dabiri, S., & Tryggvason, G. (2015). Heat transfer in turbulent bubbly flow in vertical channels. Chemical Engineering Science, 122, 106–113.
  • Datt, C., Zhu, L., Elfring, G. J., & Pak, O. S. (2015). Squirming through shear-thinning fluids. Journal of Fluid Mechanics, 784, R1-1–R1-11.
  • Drescher, K., Dunkel, J., Cisneros, L. H., Ganguly, S., & Goldstein, R. E. (2011). Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. Proceedings of the National Academy of Sciences of the United States of America, 108, 10940–10945.
  • Elgeti, J., Kaupp, U. B., & Gompper, G. (2010). Hydrodynamics of sperm cells near surfaces. Biophysical Journal, 99, 1018–1026.
  • Elgeti, J., Winkler, R. G., & Gompper, G. (2015). Physics of microswimmerssingle particle motion and collective behavior: A review. Reports on Progress in Physics, 78, 056601-1–056601-50.
  • Evans, A. A., & Lauga, E. (2010). Propulsion by passive filaments and active flagella near boundaries. Physical Review E, 82, 041915-1–041915-12.
  • Gagnon, D., & Arratia, P. (2016). The cost of swimming in generalized Newtonian fluids: Experiments with C. elegans. Journal of Fluid Mechanics, 800, 753–765.
  • Gagnon, D. A., Keim, N. C., & Arratia, P. E. (2014). Undulatory swimming in shear-thinning fluids: Experiments with Caenorhabditis elegans. Journal of Fluid Mechanics, 758, R3-1–R3-11.
  • Giesekus, H. (1982). A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. Journal of Non-Newtonian Fluid Mechanics, 11, 69–109.
  • Glowinski, R., Pan, T., Hesla, T., Joseph, D., & Periaux, J. (2001). A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow. Journal of Computational Physics, 169, 363–426.
  • Guénette, R., & Fortin, M. (1995). A new mixed finite element method for computing viscoelastic flows. Journal of Non-Newtonian Fluid Mechanics, 60, 27–52.
  • Guy, R. D., & Thomases, B. (2015). Computational challenges for simulating strongly elastic flows in biology. In S.E. Spagnolie (Ed.), Complex fluids in biological systems (pp. 359–397). New York: Springer.
  • Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: From the natural environment to infectious diseases. Nature Reviews Microbiology, 2, 95–108.
  • Harman, M. W., Dunham-Ems, S. M., Caimano, M. J., Belperron, A. A., Bockenstedt, L. K., Fu, H. C., et al. (2012). The heterogeneous motility of the lyme disease spirochete in gelatin mimics dissemination through tissue. Proceedings of the National Academy of Sciences of the United States of America, 109, 3059–3064.
  • Hwang, S., Litt, M., & Forsman, W. (1969). Rheological properties of mucus. Rheologica Acta, 8, 438–448.
  • Ishimoto, K., & Gaffney, E. A. (2014). A study of spermatozoan swimming stability near a surface. Journal of Theoretical Biology, 360, 187–199.
  • Kantsler, V., Dunkel, J., Polin, M., & Goldstein, R. E. (2013). Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 110, 1187–1192.
  • Katz, D. F. (1974). On the propulsion of micro-organisms near solid boundaries. Journal of Fluid Mechanics, 64, 33–49.
  • Lauga, E. (2007). Propulsion in a viscoelastic fluid. Physics of Fluids, 19, 083104-1–083104-13.
  • Lauga, E., DiLuzio, W. R., Whitesides, G. M., & Stone, H. A. (2006). Swimming in circles: Motion of bacteria near solid boundaries. Biophysical Journal, 90, 400–412.
  • Lauga, E., & Powers, T. R. (2009). The hydrodynamics of swimming microorganisms. Reports on Progress in Physics, 72, 096601-1–096601-36.
  • Li, G., & Ardekani, A. M. (2014). Hydrodynamic interaction of microswimmers near a wall. Physical Review E, 90, 013010-1–013010-12.
  • Li, G., & Ardekani, A. M. (2015). Undulatory swimming in non-Newtonian fluids. Journal of Fluid Mechanics, 784, R4-1–R4-13.
  • Li, G., Karimi, A., & Ardekani, A. M. (2014). Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid. Rheologica Acta, 53, 911–926.
  • Li, G., McKinley, G. H., & Ardekani, A. M. (2015). Dynamics of particle migration in channel flow of viscoelastic fluids. Journal of Fluid Mechanics, 785, 486–505.
  • Li, G., & Tang, J. X. (2009). Accumulation of microswimmers near a surface mediated by collision and rotational brownian motion. Physical Review Letters, 103, 078101-1–078101-4.
  • Martinez, V. A., Schwarz-Linek, J., Reufer, M., Wilson, L. G., Morozov, A. N., & Poon, W. C. (2014). Flagellated bacterial motility in polymer solutions. Proceedings of the National Academy of Sciences of the United States of America, 111, 17771–17776.
  • Montecucco, C., & Rappuoli, R. (2001). Living dangerously: How helicobacter pylori survives in the human stomach. Nature Reviews Molecular Cell Biology, 2, 457–466.
  • Montenegro-Johnson, T. D., Smith, A. A., Smith, D. J., Loghin, D., & Blake, J. R. (2012). Modelling the fluid mechanics of cilia and flagella in reproduction and development. European Physical Journal E, 35, 1–17.
  • Montenegro-Johnson, T. D., Smith, D. J., & Loghin, D. (2013). Physics of rheologically enhanced propulsion: Different strokes in generalized Stokes. Physics of Fluids, 25, 081903-1–081903-26.
  • Qin, B., Gopinath, A., Yang, J., Gollub, J. P., & Arratia, P. E. (2015). Flagellar kinematics and swimming of algal cells in viscoelastic fluids. Scientific Reports, 5, 9190-1–9190-7. DOI: 10.1038/srep09190.
  • Shen, X., & Arratia, P. E. (2011). Undulatory swimming in viscoelastic fluids. Physical Review Letters, 106, 208101-1–208101-4.
  • Rothschild, L. (1963). Non-random distribution of bull spermatozoa in a drop of sperm suspension. Nature, 198, 1221–1222.
  • Simons, J., Olson, S., Cortez, R., & Fauci, L. (2014). The dynamics of sperm detachment from epithelium in a coupled fluid-biochemical model of hyperactivated motility. Journal of Theoretical Biology, 354, 81–94.
  • Smith, D., Gaffney, E., Blake, J., & Kirkman-Brown, J. (2009). Human sperm accumulation near surfaces: A simulation study. Journal of Fluid Mechanics, 621, 289–320.
  • Spagnolie, S. E., & Lauga, E. (2012). Hydrodynamics of self-propulsion near a boundary: Predictions and accuracy of far-field approximations. Journal of Fluid Mechanics, 700, 105–147.
  • Suarez, S., & Pacey, A. (2006). Sperm transport in the female reproductive tract. Human Reproduction Update, 12, 23–37.
  • Taylor, G. (1951). Analysis of the swimming of microscopic organisms. Proceedings of the Royal Society A, 209, 447–461.
  • Teran, J., Fauci, L., & Shelley, M. (2010). Viscoelastic fluid response can increase the speed and efficiency of a free swimmer. Physical Review Letters, 104, 038101-1–038101-4.
  • Thomases, B., & Guy, R. D. (2014). Mechanisms of elastic enhancement and hindrance for finite-length undulatory swimmers in viscoelastic fluids. Physical Review Letters, 113, 098102-1–098102-5.
  • Vélez-Cordero, J. R., & Lauga, E. (2013). Waving transport and propulsion in a generalized Newtonian fluid. Journal of Non-Newtonian Fluid Mechanics, 199, 37–50.
  • Wolf, D. P., Blasco, L., Khan, M. A., & Litt, M. (1977). Human cervical mucus. I. rheologic characteristics. Fertility and Sterility, 28, 41–46.
  • Woolley, D. (2003). Motility of spermatozoa at surfaces. Reproduction, 126, 259–270.
  • Yazdi, S., Ardekani, A. M., & Borhan, A. (2014). Locomotion of microorganisms near a no-slip boundary in a viscoelastic fluid. Physical Review E, 90, 043002-1–043002-11.
  • Yazdi, S., Ardekani, A. M., & Borhan, A. (2015). Swimming dynamics near a wall in a weakly elastic fluid. Journal of Nonlinear Science, 25, 1153–1167.
  • Yuan, J., Raizen, D. M., & Bau, H. H. (2015). Propensity of undulatory swimmers, such as worms, to go against the flow. Proceedings of the National Academy of Sciences of the United States of America, 112, 3606–3611.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.