181
Views
0
CrossRef citations to date
0
Altmetric
Articles

Coalescence-induced jumping of immersed and suspended droplets on microstructured substrates

, &
Pages 205-223 | Received 23 Sep 2016, Accepted 30 Oct 2016, Published online: 31 Mar 2017

References

  • Boreyko, J. B., & Chen, C. H. (2009). Self-propelled dropwise condensate on super-hydrophobic surfaces. Physics Review Letters, 103, 184501. doi:10.1103/PhysRevLett.103.184501
  • Cahn, J. W. (1977). Critical-point wetting. The Journal of Chemical Physics, 66, 3667–3672. doi:10.1063/1.434402
  • Chen, C. H., Cai, C. L., Tsai, C. L., Chen, C. L., Xiong, G., Yu, Y., & Ren, Z. (2007). Dropwise condensation on superhydrophobic surfaces with two tier roughness. Applied Physics Letters, 90, 173108. doi:10.1063/1.2731434
  • Chen, X. M., Wu, J., Ma, R. Y., Hua, M., Koratkar, N., Yao, S. H., & Wang, Z. K. (2011). Nanograssed micropyramidal architectures for continuous dropwise condensation. Advanced Functional Materials, 21, 4617–4623. doi:10.1002/adfm.201101302
  • Chen, X., Patel, R. S., Weibel, J. A., & Garimella, S. V. (2016). Coalescence-induced jumping of multiple condensate droplets on hierarchical superhydrophobic surfaces. Scientific Reports, 6, 18649. doi:10.1038/srep18649
  • Farokhirad, S., Morris, J. F., & Lee, T. (2015). Coalescence-induced jumping of droplet: Inertia and viscosity effects. Physics of Fluids, 27, 102102. doi:10.1063/1.4932085
  • Feng, J., Qin, Z. Q., & Yao, S. H. (2012). Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces. Langmuir, 28, 6067–6075. doi:10.1021/la300609f
  • Forsberg, P., Nikolajeff, F., & Karlsson, M. (2011). Cassie-Wenzel and Wenzel-Cassie transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft Matter, 7, 104–109. doi:10.1039/C0SM00595A
  • Kim, A., Lee, C., Kim, H., & Kim, J. (2015). Simple approach to superhydrophobic nanostructured Al for practical anti-frosting application based on enhanced self-propelled jumping droplets. ACS Applied Materials and Interfaces, 7, 7206–7213. doi:10.1021/acsami.5b00292
  • Lee, T. (2009). Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids. Computers and Mathematics with Applications, 58, 987–994. doi:10.1016/j.camwa.2009.02.017
  • Lee, T., & Liu, L. (2010). Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces. Journal of Computational Physics, 229, 8045–8063. doi:10.1016/j.jcp.2010.07.007
  • Liu, F., Ghigliotti, G., Feng, J. J., & Chen, C. H. (2014). Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces. Journal of Fluid Mechanics, 752, 39–65. doi:10.1017/jfm.2014.320
  • Liu, L. & Lee, T. (2009). Wall free energy based polynomial boundary conditions for non-ideal gas lattice Boltzmann equation. International Journal of Modern Physics, 20, 1749–1768. doi:10.1142/S0129183109014710
  • Liu, T. Q., Sun, W., Sun, X. Y., & Ai, H. R. (2012). Mechanism study of condensed drops jumping on super-hydrophobic surfaces. Colloids and Surfaces A, 414, 366–374. doi:10.1016/j.colsurfa.2012.08.063
  • Liu, X., & Cheng, P. (2015). 3D multiphase lattice Boltzmann simulations for morphological effects on self-propelled jumping of droplets on textured superhydrophobic surfaces. International Communications in Heat and Mass Transfer, 64, 7–13. doi:10.1016/j.icheatmasstransfer.2015.03.002
  • Miljkovic, N., Enright, R., Nam, Y., Lopez, K., Dou, N., Sack, J., & Wang, E. N. (2013). Jumping-droplet-enhanced condensation on scalable super-hydrophobic nanostructured surfaces. Nano Letters, 13, 179–187. doi:10.1021/nl303835d
  • Miljkovic, N., Enright, R., & Wang, E. N. (2012). Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. NANO, 6, 1776–1785. doi:10.1021/nn205052a
  • Miljkovic, N., Enright, R., & Wang, E. N. (2013). Modeling and optimization of superhydrophobic condensation. Journal of Heat Transfer, 135, 111004. doi:10.1115/1.4024597
  • Nam, Y., Kim, H., & Shin, S. (2013). Energy and hydrodynamic analysis of coalescence-induced jumping droplets. Applied Physics Letters, 103, 161601. doi:10.1063/1.4825273
  • Peng, B., Wang, S., Lan, Z., Xu, W., Wen, R., & Ma, X. (2013). Analysis of droplet jumping phenomenon with lattice Boltzmann simulation of droplet coalescence. Applied Physics Letters, 102, 151601. doi:10.1063/1.4799650
  • Shi, Y., Tang, G., & Xia, H. (2015). Investigation of coalescence-induced droplet jumping on superhydrophobic surfaces and liquid condensate adhesion on slit and plain fins. International Journal of Heat and Mass Transfer, 88, 445–455. doi:10.1016/j.ijheatmasstransfer.2015.04.085
  • Wang, F. C., Yang, F., & Zhao, Y. P. (2011). Size effect on the coalescence-induced self-propelled droplet. Applied Physics Letters, 98, 053112. doi:10.1063/1.3553782
  • Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry Research, 28, 988–994. doi:10.1021/ie50320a024
  • Wisdom, K. M., Watson, J. A., Liu, F., Watson, G. S., & Chen, C. H. (2013). Self-cleaning of super-hydrophobic surfaces by self-propelled jumping condensate. Proceedings of the National Academy of Sciences of the United States of America., 110, 7992–7997. doi:10.1073/pnas.1210770110
  • Zhang, R., Farokhirad, S., Lee, T., & Koplik, J. (2014). Multiscale liquid drop impact on wettable and textured surfaces. Physics of Fluids, 26, 082003. doi:10.1063/1.4892083

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.