35
Views
0
CrossRef citations to date
0
Altmetric
Articles

MFS fading regularization method for the identification of boundary conditions from partial elastic displacement field data

, ORCID Icon, ORCID Icon &
Pages 508-539 | Received 22 Dec 2017, Accepted 14 Dec 2018, Published online: 30 Jan 2019

References

  • Andrieux, S., & Baranger, T. N. (2008). An energy error-based method for the resolution of the Cauchy problem in 3D linear elasticity. Computer Methods in Applied Mechanics and Engineering, 197(9), 902–920.
  • Arai, M., Nishida, T., & Adachi, T. (2000). Identification of dynamic pressure distribution applied to the elastic thin plate. In M. Tanaka, & G. S. Dulikravich (Eds.), Inverse problems in Engineering Mechanics II (Int sym inverse problems in eng mech 2000, Nagano, Japan) (pp. 129–138) Elsevier Science Ltd. ISBN 9780080436937. doi: 10.1016/B978-008043693-7/50086-6.
  • Baranger, T. N., & Andrieux, S. (2008). An optimization approach for the Cauchy problem in linear elasticity. Structural and Multidisciplinary Optimization, 35(2), 141–152.
  • Berger, J. R., & Karageorghis, A. (2001). The method of fundamental solutions for layered elastic materials. Engineering Analysis with Boundary Elements, 25(10), 877–886.
  • Burt, P. J., Yen, C., & Xu, X. (1982). Local correlation measures for motion analysis: A comparative study. Proc. IEEE Conf. on Pattern Recognition and Image Processing (pp. 269–274). Washington, DC.
  • Caillé, L., Delvare, F., Marin, L., & Michaux-Leblond, N. (2017). Fading regularization MFS algorithm for the Cauchy problem associated with the two-dimensional Helmholtz equation. International Journal of Solids and Structures, 125, 122–133.
  • Cimetière, A., Delvare, F., Jaoua, M., & Pons, F. (2001). Solution of the Cauchy problem using iterated Tikhonov regularization. Inverse Problems, 17(3), 553.
  • Cimetière, A., Delvare, F., Jaoua, M., & Pons, F. (2002). An inversion method for harmonic functions reconstruction. International Journal of Thermal Sciences, 41(6), 509–516.
  • Cimetière, A., Delvare, F., & Pons, F. (2000). Une méthode inverse à régularisation évanescente [An inverse method with vanishing regularization]. Comptes Rendus De l’Académie Des Sciences-Series IIB-Mechanics, 328(9), 639–644.
  • Delvare, F., Cimetière, A., Hanus, J.-L., & Bailly, P. (2010). An iterative method for the Cauchy problem in linear elasticity with fading regularization effect. Computer Methods in Applied Mechanics and Engineering, 199(49), 3336–3344.
  • Delvare, F., Cimetière, A., & Pons, F. (2002). An iterative boundary element method for Cauchy inverse problems. Computational Mechanics, 28(3–4), 291–302.
  • Dennis, B. H., Dulikravich, G. S., & Yoshimura, S. (2004). A finite element formulation for the determination of unknown boundary conditions for three-dimensional steady thermoelastic problems. Journal of Heat Transfer, 126(1), 110–118.
  • Durand, B., Delvare, F., & Bailly, P. (2011). Numerical solution of Cauchy problems in linear elasticity in axisymmetric situations. International Journal of Solids and Structures, 48(21), 3041–3053.
  • Grédiac, M., Hild, F., & Pineau, A. (Eds.) (2012). Full-field measurements and identification in solid mechanics. London: ISTE; Hoboken, N.J.: Wiley. ISBN: 9781118578469. doi: 10.1002/9781118578469
  • Hadamard, J. (1923). Lectures on Cauchy’s problem in linear partial differential equations. New Haven: Yale University Press.
  • Hild, F., & Roux, S. (2012). Comparison of local and global approaches to digital image correlation. Experimental Mechanics, 52(9), 1503–1519.
  • Koya, T., Yeih, W., & Mura, T. (1993). An inverse problem in elasticity with partially overprescribed boundary conditions, Part II: Numerical details. Journal of Applied Mechanics, 60(3), 601–606.
  • Maniatty, A., Zabaras, N., & Stelson, K. (1989). Finite element analysis of some inverse elasticity problems. Journal of Engineering Mechanics, 115(6), 1303–1317.
  • Marin, L., Delvare, F., & Cimetière, A. (2016). Fading regularization MFS algorithm for inverse boundary value problems in two-dimensional linear elasticity. International Journal of Solids and Structures, 78–79, 9–20.
  • Marin, L., Elliott, L., Ingham, D. B., & Lesnic, D. (2001). Boundary element method for the Cauchy problem in linear elasticity. Engineering Analysis with Boundary Elements, 25(9), 783–793.
  • Marin, L., Hào, D. N., & Lesnic, D. (2002). Conjugate gradient–Boundary element method for the Cauchy problem in elasticity. The Quarterly Journal of Mechanics and Applied Mathematics, 55(2), 227–247.
  • Marin, L., & Lesnic, D. (2002). Regularized boundary element solution for an inverse boundary value problem in linear elasticity. Communications in Numerical Methods in Engineering, 18(11), 817–825.
  • Marin, L., & Lesnic, D. (2003). BEM first-order regularisation method in linear elasticity for boundary identification. Computer Methods in Applied Mechanics and Engineering, 192(16), 2059–2071.
  • Marin, L., & Lesnic, D. (2004). The method of fundamental solutions for the Cauchy problem in two-dimensional linear elasticity. International Journal of Solids and Structures, 41(13), 3425–3438.
  • Marin, L., & Lesnic, D. (2005). Boundary element-Landweber method for the Cauchy problem in linear elasticity. IMA Journal of Applied Mathematics, 70(2), 323–340.
  • Sutton, M. A., McNeill, S. R., Helm, J. D., & Chao, Y. J. (2000). Advances in two-dimensional and three-dimensional computer vision. In P. K. Rastogi (Ed.), Photomechanics. Topics in Applied Physics, vol 77 (pp. 323–372). Heidelberg, Berlin: Springer. doi: 10.1007/3-540-48800-6_10
  • Sutton, M. A., Orteu, J. J., & Schreier, H. (2009). Image correlation for shape, motion and deformation measurements: Basic concepts, theory and applications. New York, NY: Springer Science & Business Media. ISBN 978-0-387-78746-6. doi: 10.1007/978-0-387-78747-3.
  • Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., & McNeill, S. R. (1983). Determination of displacements using an improved digital correlation method. Image and Vision Computing, 1(3), 133–139.
  • Tikhonov, A. N., & Arsenin, V. Y. (1977). Solution of ill-posed problems. New York, NY: John Wiley and Sons, Inc.; Washington, D.C: V. H. Winston & Sons.
  • Touchal, S., Morestin, F., & Brunet, M. (1996). Mesure de champs de déplacements et de déformations par corrélation d’images numériques. In Cailletaud (Ed.), Proc. Actes du Colloque National Mécamat’96 (pp. 179–182). Aussois.
  • Yeih, W., Koya, T., & Mura, T. (1993). An inverse problem in elasticity with partially overprescribedboundary conditions, Part I: Theoretical approach. Journal of Applied Mechanics, 60(3), 595–600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.