Publication Cover
Acta Clinica Belgica
International Journal of Clinical and Laboratory Medicine
Volume 74, 2019 - Issue 3
234
Views
5
CrossRef citations to date
0
Altmetric
Review

Diabetes mellitus and laboratory medicine in sub-Saharan Africa: challenges and perspectives

, , &

References

  • Mbanya JC, Motala AA, Sobngwi E, et al. Diabetes in sub-Saharan Africa. Lancet. 2010;375(9733):2254–2266.
  • International Diabetes Federation (IDF). Diabetes Atlas. 7th ed. Brussels, Belgium: IDF; 2015.
  • Grant P. Management of diabetes in resource-poor settings. Clin Med (Lond). 2013;13(1):27–31.
  • International Diabetes Federation (IDF). Diabetes Atlas. 5th ed. Brussels, Belgium: IDF; 2011.
  • Peer N, Kengne AP, Motala AA, et al. Diabetes in the Africa Region: an update. Diabetes Res Clin Pract. 2014;103(2):197–205.
  • African Society for Laboratory Medicine. Ministerial call for action: strengthening laboratory services in Africa. [cited 2017 Jan 15]. Available from: http://www.aslm.org/what-we-do/ministerial-call-for-action/
  • Alemnji GA, Zeh C, Yao K, et al. Strengthening national health laboratories in sub-Saharan Africa: a decade of remarkable progress. Trop Med Int Health. 2014;19(4):450–458.
  • Davies J, Abimiku A, Alobo M, et al. Sustainable clinical laboratory capacity for health in Africa. Lancet Glob Health. 2017;5(3):e248–e249.
  • Schroeder LF, Amukele T. Medical laboratories in sub-Saharan Africa that meet international quality standards. Am J Clin Pathol. 2014;141(6):791–795.
  • Beran D, Yudkin JS, De Courten M. Access to care for patients with insulin-requiring diabetes in developing countries: case studies of Mozambique and Zambia. Diabetes Care. 2005;28(9):2136–2140.
  • Cohen DB, Allain TJ, Glover S, et al. A survey of the management, control, and complications of diabetes mellitus in patients attending a diabetes clinic in Blantyre, Malawi, an area of high HIV prevalence. Am J Trop Med Hyg. 2010;83(3):575–581.
  • The International Expert Committee. International expert committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 2009;32(7):1327–1334.
  • D’Orazio P, Burnett RW, Fogh-Andersen N, et al. Approved IFCC recommendation on reporting results for blood glucose (abbreviated). Clin Chem. 2005;51(9):1573–1576.
  • Janssen K, Delanghe J. Importance of the pre-analytical phase in blood glucose analysis. Acta Clin Belg. 2010;65(5):311–318.
  • Colagiuri S, Sandbaek A, Carstensen B, et al. Comparability of venous and capillary glucose measurements in blood. Diabet Med. 2003;20(11):953–956.
  • Kuwa K, Nakayama T, Hoshino T, et al. Relationships of glucose concentrations in capillary whole blood, venous whole blood and venous plasma. Clin Chim Acta. 2001;307(1–2):187–192.
  • Neely RDG, Kiwanuka JB, Hadden DR. Influence of sample type on the interpretation of the oral glucose tolerance test for gestational diabetes mellitus. Diabet Med. 1991;8(2):129–134.
  • Sacks DB, Bruns DE, Goldstein DE, et al. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem. 2002;48(3):436–472.
  • Beran D, Yudkin JS. Looking beyond the issue of access to insulin: what is needed for proper diabetes care in resource poor settings. Diabetes Res Clin Pract. 2010;88(3):217–221.
  • Priya M, Mohan Anjana R, Pradeepa R, et al. Comparison of capillary whole blood versus venous plasma glucose estimations in screening for diabetes mellitus in epidemiological studies in developing countries. Diabetes Technol Ther. 2011;13(5):586–591.
  • Bhavadharini B, Mahalakshmi MM, Maheswari K, et al. Use of capillary blood glucose for screening for gestational diabetes mellitus in resource-constrained settings. Acta Diabetol. 2016;53(1):91–97.
  • Winkelman JW, Wybenga DR, Tanasijevic MJ. The fiscal consequences of central vs distributed testing of glucose. Clin Chem. 1994;40(8):1628–1630.
  • Wambui Charity K, Kumar AMV, Hinderaker SG, et al. Do diabetes mellitus patients adhere to self-monitoring of blood glucose (SMBG) and is this associated with glycemic control? Experiences from a SMBG program in western Kenya. Diabetes Res Clin Pract. 2016;112:37–43.
  • Ogbera AO, Ekpebegh C. Diabetes mellitus in Nigeria: the past, present and future. World J Diabetes. 2014;5(6):905–911.
  • Carraro P, Plebani M. Post-analytical errors with portable glucose meters in the hospital setting. Clin Chim Acta. 2009;404(1):65–67.
  • Skeie S, Thue G, Nerhus K, et al. Instruments for self-monitoring of blood glucose: comparisons of testing quality achieved by patients and a technician. Clin Chem. 2002;48(7):994–1003.
  • Goldstein DE, Little RR, Lorenz RA, et al. Tests of glycemia in diabetes. Diabetes Care. 2004;27(7):1761–1773.
  • Restrepo BI, Pino PA, Zarate I, et al. Dipstick urinalysis for diabetes screening in TB patients. Int Health. 2013;5(2):157–159.
  • Debussche X, Balcou-Debussche M, Besancon S, et al. Challenges to diabetes self-monitoring in developing countries. Diabetes Voice. 2009;54:12–14.
  • Muller N, Kammer K, Kloos C, et al. Postprandial self-monitoring of urine glucose reflects glycaemic control in people with relatively well controlled Type 2 diabetes mellitus not treated with insulin: a retrospective cohort study. Diabet Med. 2015;32(7):958–962.
  • Dallosso HM, Bodicoat DH, Campbell M, et al. Self-monitoring of blood glucose versus self-monitoring of urine glucose in adults with newly diagnosed Type 2 diabetes receiving structured education: a cluster randomized controlled trial. Diabet Med. 2015;32(3):414–422.
  • Speeckaert M, Van Biesen W, Delanghe J, et al. Are there better alternatives than haemoglobin A1c to estimate glycaemic control in the chronic kidney disease population? Nephrol Dial Transplant. 2014;29(12):2167–2177.
  • Park PH, Pastakia SD. Access to Hemoglobin A1c in rural Africa: a difficult reality with severe consequences. J Diabetes Res. 2018;2018:6093595.
  • Rahlenbeck SI. Monitoring diabetic control in developing countries: a review of glycated haemoglobin and fructosamine assays. Trop Doct. 1998;28(1):9–15.
  • Sobngwi E, Ndour-Mbaye M, Boateng KA, et al. Type 2 diabetes control and complications in specialised diabetes care centres of six sub-Saharan African countries: the Diabcare Africa study. Diabetes Res Clin Pract. 2012;95(1):30–36.
  • Nakanga WP, Crampin A, Nyirenda M. Should haemoglobin A1C be used for diagnosis of diabetes mellitus in Malawi? Malawi Med J. 2016;28(1):28–30.
  • Paterson AD. HbA1c for type 2 diabetes diagnosis in Africans and African Americans: personalized medicine NOW! PLoS Med. 2017;14(9):e1002384.
  • Sobngwi E, Balde N. Translating evidence into practice: improving access to HbA1c in Sub-Saharan Africa. Diabetes Voice. 2011;56:36–39.
  • Balde N, Camara A, Sobngwi-Tambekou J, et al. Improving access to HbA1c in sub-Saharan Africa (IA3) cohort: cohort profile. Pan Afr Med J. 2017;27:275.
  • Motta LA, Shephard MDS, Brink J, et al. Point-of-care testing improves diabetes management in a primary care clinic in South Africa. Prim Care Diabetes. 2017;11(3):248–253.
  • Drain PK, Hyle EP, Noubary F, et al. Diagnostic point-of-care tests in resource-limited settings. Lancet Infect Dis. 2014;14(3):239–249.
  • Gomez-Perez FJ, Aguilar-Salinas CA, Almeda-Valdes P, et al. HbA1c for the diagnosis of diabetes mellitus in a developing country. position article Arch Med Res. 2010;41(4):302–308.
  • Jingi AM, Noubiap JJ, Ewane Onana A, et al. Access to diagnostic tests and essential medicines for cardiovascular diseases and diabetes care: cost, availability and affordability in the West Region of Cameroon. PLoS One. 2014;9(11):e111812.
  • George JA. Should haemoglobin A1c be used for the diagnosis of diabetes mellitus in South Africa? JEMDSA. 2011;16(3):122–127.
  • Al-Ansary L, Farmer A, Hirst J, et al. Point-of-care testing for Hb A1c in the management of diabetes: a systematic review and metaanalysis. Clin Chem. 2011;57(4):568–576.
  • Cavagnolli G, Pimentel AL, Freitas PA, et al. Effect of ethnicity on HbA1c levels in individuals without diabetes: systematic review and meta-analysis. PLoS One. 2017;12:e0171315.
  • Herman WH, Cohen RM. Racial and ethnic differences in the relationship between HbA1c and blood glucose: implications for the diagnosis of diabetes. J Clin Endocrinol Metab. 2012;97(4):1067–1072.
  • Fattoum S. Evolution of hemoglobinopathy prevention in Africa: results, problems and prospect. Mediterr J Hematol Infect Dis. 2009;1(1):e2009005.
  • Williams TN, Weatherall DJ. World distribution, population genetics, and health burden of the hemoglobinopathies. Cold Spring Harb Perspect Med. 2012;2(9):a011692.
  • Bry L, Chen PC, Sacks DB. Effects of hemoglobin variants and chemically modified derivatives on assays for glycohemoglobin. Clin Chem. 2001;47(2):153–163.
  • Smaldone A. Glycemic control and hemoglobinopathy: when A1C may not be reliable. Diabetes spectrum. 2008;21(1):46–49.
  • Ezzati MLA, Rodgers AA, Murray CJL. editors Comparative Quantification of Health Risks: global and Regional Burden of Disease Attributable to Selected Major Risk Factors. Geneva, Switzerland: World Health Organization. 2004;1–2234.
  • Sinha N, Mishra TK, Singh T, et al. Effect of iron deficiency anemia on hemoglobin A1c levels. Ann Lab Med. 2012;32(1):17–22.
  • Behan KJ. Improving the accuracy of hemoglobin A1c: your help is needed. Lab Medicine. 2008;39(7):389–393.
  • George JA, Erasmus RT. Haemoglobin A1c or Glycated Albumin for Diagnosis and Monitoring Diabetes: an African Perspective. Ind J Clin Biochem. 2018. DOI:10.1007/s12291-018-0755-9
  • Schnedl WJ, Krause R, Halwachs-Baumann G, et al. Evaluation of HbA1c determination methods in patients with hemoglobinopathies. Diabetes Care. 2000;23(3):339–344.
  • Koga M. Glycated albumin; clinical usefulness. Clin Chim Acta. 2014;433:96–104.
  • Goldsmith LA. Biochemistry and Physiology of the Skin I. 1st ed. London: Oxford University Press; 1983.
  • Bakan E, Bakan N. Glycosylation of nail in diabetics: possible marker of long-term hyperglycemia. Clin Chim Acta. 1985;147(1):1–5.
  • Kishabongo AS, Katchunga P, Van Aken EH, et al. Glycation of nail proteins: from basic biochemical findings to a representative marker for diabetic glycation-associated target organ damage. PLoS One. 2015;10:e0120112.
  • Kishabongo AS, Katchunga P, Van Aken EH, et al. Glycated nail proteins: a new approach for detecting diabetes in developing countries. Trop Med Int Health. 2014;19(1):58–64.
  • Coopman R, Van De Vyver T, Kishabongo AS, et al. Glycation in human ngernail clippings using re ectance ATR-FTIR spectrometry, a new marker for the diagnosis and monitoring of diabetes mellitus. Clin Biochem. 2017;50(1–2):62–67.
  • Monteyne T, Coopman R, Kishabongo AS, et al. Analysis of protein glycation in human fingernail clippings with near-infrared (NIR) spectroscopy as an alternative technique for the diagnosis of diabetes mellitus. Clin Chem Lab Med. 2018; DOI:10.1515/cclm-2018-0239
  • Katchunga PB, Mirindi PN, Kishabongo AS, et al. Glycated nail proteins as a new biomarker in management of the South Kivu Congolese diabetics. Biochem Med (Zagreb). 2015;25(3):469–473.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.