1,704
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Ruminal methanogenesis and biohydrogenation reduction potential of papaya (Carica papaya) leaf: an in vitro study

, , , &
Pages 157-165 | Received 08 Jun 2015, Accepted 30 Dec 2015, Published online: 09 May 2016

References

  • AOAC. 1990. Official method of analysis. 15th ed. Arlington, VA: Association of Analytical Chemists.
  • Ayoola PB, Adeyeye A. 2010. Phytochemical and nutrient evaluation of Carica papaya (pawpaw) leaves. IJRRAS. 5:325–328.
  • Bhatta R, Saravanan M, Baruah L, Prasad CS. 2014. Effects of graded levels of tannin-containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. J Appl Microbiol. 118:557–564.
  • Bhatta R, Saravanan M, Baruah L, Sampath KT, Prasad CS. 2013. Effect of plant secondary compounds on in vitro methane, ammonia production and ruminal protozoa population. J Appl Microbiol. 115:455–465.
  • Bhatta R, Saravanan M, Baruah L, TSampath K. 2012. Nutrient content, in vitro ruminal fermentation characteristics and methane reduction potential of tropical tannin-containing leaves. J Sci Food Agric. 92:2929–2935.
  • Bhatta R, Uyeno Y, Tajima K, Takenaka A, Yabumoto Y, Nonaka I, Enishi O, Kurihara M. 2009. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J Dairy Sci. 92:5512–5522.
  • Bouchard K, Wittenberg KM, Legesse G, Krause DO, Khafipour E, Buckley KE, Ominski KH. 2015. Comparison of feed intake, body weight gain, enteric methane emission and relative abundance of rumen microbes in steers fed sainfoin and lucerne silages under western Canadian conditions. Grass Forage Sci. 70:116–129.
  • Canini A, Alesiani D, Arkangelo G, Tagliatesta P. 2007. Gaschromatography–mass spectrometry analysis of phenolic compounds from Carica papaya L. leaf. J Food Comp Anal. 20:584–590.
  • Cabiddu A, Salis L, Tweed JK, Molle G, Decandiaa M, Lee M. 2010. The influence of plant polyphenols on lipolysis and biohydrogenation in dried forages at different phenological stages: in vitro study. J Sci Food Agric. 90:829–835.
  • Castagninoa PS, Messanaa JD, Fiorentini G, De Jesusa RB, San Vitoa E, Carvalhoa IPC, Berchielli TT. 2015. Glycerol combined with oils did not limit biohydrogenation of unsaturated fatty acid but reduced methane production in vitro. Anim Feed Sci Technol. 201:14–24.
  • Chilliard Y, Glasser F, Ferlay A, Bernard L, Rouel J, Doreau M. 2007. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur J Lipid Sci Technol. 109:828–855.
  • Durmic Z, McSweeney CS, Kemp GW, Hutton PP, Wallace RJ, Vercoe PE. 2008. Australian plants with potential to inhibit bacteria and processes involved in ruminal biohydrogenation of fatty acids. Anim Feed Sci Technol. 145:271–284.
  • Ebrahimi M, Rajion MA, Goh YM. 2014. Effects of oils rich in linoleic and α-linolenic acids on fatty acid profile and gene expression in goat meat. Nutrients. 6:3913–3928.
  • Fievez V, Babayemi OJ, Demeyer D. 2005. Estimation of direct and indirect gas production in syringes: A tool to estimate short chain fatty acid production that requires minimal laboratory facilities. Anim Feed Sci Technol. 123:197–210.
  • Fievez V, Vlaeminck B, Jenkins T, Enjalbert F, Doreau M. 2007. Assessing rumen biohydrogenation and its manipulation in vivo, in vitro and in situ. Eur J Lipid Sci Technol. 109:740–756.
  • Folch J, Lees M, Sloane Stanely GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 226:497–450.
  • Gunal M, Ishlak A, Abu Ghazaleh AA, Khattab W. 2014. Essential oils effect on rumen fermentation and biohydrogenation under in vitro conditions. Czech J Anim Sci. 10:450–459.
  • Harfoot G, Hazlewood GP. 1997. Lipid metabolism in the rumen. In: Hobson PN, editor. The rumen microbial ecosystem. London (UK): Elsevier. p. 382–426.
  • Jayanegara A, Kreuzer M, Leiber F. 2012. Ruminal disappearance of polyunsaturated fatty acids and appearance of biohydrogenation products when incubating linseed oil with alpine forage plant species in vitro. Livestock Sci. 147:104–112.
  • Jayanegara A, Goel G, Makkar HPS, Becker K. 2011. Reduction in methane emissions from ruminants by plant secondary metabolites: effects of polyphenols and saponins. Rome: FAO. 151–157.
  • Kemp PLD. 1984. Hydrogenation in vitro of alpha-linolenic acid to stearic acid by mixed cultures of pure strains of rumen bacteria. J Genera Microbiol. 130:527–533.
  • Kim JE, Sharon AH, Michael RF, Nigel DS. 2010. Dietary transformation of lipid in the rumen microbial ecosystem. Asian-Aust. J Anim Sci. 22:1341–1350.
  • Koike S, Kobayashi Y. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol Lett. 204:361–366.
  • Liu H, Vaddella V, Zhou D. 2012. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep. J Dairy Sci. 94:6069–6077.
  • Machmuller A, Soliva CR, Kreuzer M. 2003. Methane-suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion. Br J Nutr. 3:529–540.
  • Maia MRG, Chaudhary LC, Figueres L, Wallace RJ. 2007. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek. 91:303–314.
  • Maisarah AM, Asmah R, Fauziah O. 2014. Proximate analysis, antioxidant and antiproliferative activities of different parts of Carica papaya. J Nutr Food Sci. 4:2.
  • Makkar HPS, Becker K. 2003. Nutrional value and whole and ethanol antinutritional components of extracted Moringa oleifera leaves. Anim Feed Sci Technol. 63:211–228.
  • Newbold CJ, Lassalas B, Jouany JP. 1995. The importance of methanogens associated with ciliate protozoa in ruminal methane production in vitro. Lett Appl Microbiol. 21:230–234.
  • Porter LJ, Hrstich BG. 1986. The conversion of proantocyadins and prodelphinidin stocyanidin and delphinidin. Phytochemtry. 25:223–230.
  • Rajion MA, McLean JG, Cahill RNP. 1985. Essential fatty acids in the fetal and newborn lamb. Aust J Biol Sci. 38:33–40.
  • Samanta AK, Singh KK, Das MM, Maity SB, Kundu SS. 2003. Effect of complete feed block on nutrient utilization and rumen fermentation in Barbari goats. Small Ruminant Res. 48:95–102.
  • Solorzano L. 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol Oceanogr. 14:799–801.
  • Sylvester JT, Karnati SKR, Yu Z, Morrison M, Firkins JL. 2004. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J Nutr. 134:3378–3380.
  • Tan HY, Sieo CC, Abdullah N, Liang JB, Huang JD, Ho YW. 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Anim Feed Sci Technol. 169:185–193.
  • Vasta V, Makkar HPS, Mele M, Priolo A. 2009. Ruminal biohydrogenation as affected by tannins in vitro. Br J Nutr. 102:82–92.
  • Vasta V, Yanez-Ruiz DR, Mele M, Serra A, Luciano G, Lanza M, Biondi L, Priolo A. 2010. Bacterial and protozoal communities and fatty acid profile in the rumen of sheep fed a diet containing added tannins. Appl Environ Microbiol. 76:2549–2555.
  • Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 74:3583–3597.
  • Wanapat M, Kang S, Polyorach S. 2013. Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics. J Anim Sci Biotechnol. 4:32.
  • Zhang CM, Guo YQ, Yuan ZP, Wu YM, Wang JK, Liu JX, Zhu WY. 2008. Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Anim Feed Sci Technol. 146:259–269.
  • Zmora P, Cieslak A, Pers-Kamczyc E, Nowak A, Szczechowiak J, Szumacher-Strabel M. 2012. Effect of Mentha piperita L. on in vitro rumen methanogenesis and fermentation. Acta Agric. 62:46–52.