3,125
Views
9
CrossRef citations to date
0
Altmetric
Papers

Effective screening of antibiotic and coccidiostat residues in food of animal origin by reliable broad-spectrum residue screening tests

ORCID Icon, , , &
Pages 487-501 | Received 29 Dec 2019, Accepted 21 Apr 2020, Published online: 13 May 2020

References

  • Bacanli M, Başaran N. 2019. Importance of antibiotic residues in animal food. Food Chem Toxicol. 125:462–466.
  • Barreto F, Ribeiro C, Hoff RB, Dalla Costa T. 2017. A simple and high-throughput method for determination and confirmation of 14 coccidiostats in poultry muscle and eggs using liquid chromatography–quadrupole linear ion trap-tandem mass spectrometry (HPLC–QqLIT-MS/MS): validation according to European Union 2002/657/EC. Talanta. 168:43–51.
  • Beltrán MC, Althaus RL, Molina A, Berruga MI, Molina MP. 2015. Analytical strategy for the detection of antibiotic residues in sheep and goat’s milk. Span J Agric Res. 13(1):e0501–e0509.
  • Bogaerts R, Wolf F. 1980. A standardised method for the detection of residues of antibacterial substances in fresh meat. Fleischwirtschaft. 60:672–673.
  • Cháfer-Pericás C, MTQuieira Á, Puchades R. 2010. Fast screening methods to detect antibiotic residues in food samples. Trends Anal Chem. 29(9):1038–1049.
  • Clarke L, Fodey TL, Crooks SRH, Moloney M, O'Mahony J, Delahaut P, O'Kennedy R, Danaher M. 2014. A review of coccidiostats and the analysis of their residues in meat and other food. Meat Sci. 97(3):358–374.
  • Council of the European Union. 1996. Council Directive 96/23/EC of 29 April 1996 on measures to monitor certain substances and residues thereof in live animals and animal products. Off J Eur Union. L125:10–32.
  • Danaher M, Shanahan C, Butler F, Evans R, O’Sullivan D, Glynn D, Camon T, Lawlor P, O’Keeffe M. 2016. Risk based approach to developing a national residue sampling plan for testing under European Union regulation for veterinary medicinal products and coccidiostat feed additives in domestic animal production. Food Addit Contam Part A. 33(7):1155–1165.
  • Dasenaki ME, Thomaidis NS. 2019. Multi-residue methodology for the determination of 16 coccidiostats in animal tissues and eggs by hydrophilic interaction liquid chromatography–Tandem mass spectrometry. Food Chem. 275:668–680.
  • Dewangan J, Srivastava S, Rath SK. 2017. Salinomycin: a new paradigm in cancer therapy. Tumour Biol. 39(3):101042831769503–101042831769512.
  • El Nasri HA, Salman AM, Osman IA. 2012. Detection of antibiotic residues in table eggs using disc assay and Premi test in Khartoum state, Sudan. J Vet Med Anim Prod. 3:16–27.
  • European Commission. 2002. Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Union. L221:8–36.
  • European Commission. 2004. Regulation (EC) No. 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin. Off J Eur Union. L139:14–74.
  • European Commission. 2009. Commission Directive 2009/8/EC of 10 February 2009 amending Annex I to Directive 202/32/EC of the European Parliament and of the Council as regards maximum levels of unavoidable carry-over of coccidiostats or histomonostats in non-target feed. Off J Eur Union. L40:19–25.
  • European Commission. 2010. Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off J Eur Union. L15:1–72.
  • European Commission. 2014. Commission Implementing Regulation (EU) 2017/1914 of 19 October 2017 concerning the authorisation of salinomycin sodium (Sacox 120 microGranulate and Sacox 200 microGranulate) as a feed additive for chickens for fattening and chickens reared for laying and repealing Regulations (EC) No 1852/2003 and (EC) No 1463/2004. Off J Eur Union. L271:1–6.
  • European Food Safety Authority. 2019. Report for 2017 on the results from the monitoring of veterinary medicinal product residues and other substances in live animals and animal products. EFSA supporting publication 2019:EN-1578. p. 88.
  • European Medicines Agency. 2019. Maximum residue limits. [accessed 2019 December 5]. https://www.ema.europa.eu/en/veterinary-regulatory/research-development/maximum-residue-limits-mrl.
  • European Parliament and the Council of the European Union. 2009. Regulation (EC) No 470/2009 of the European Parliament and of the Council of 6 May 2009 laying down Community procedures for the establishment of residue limits of pharmacologically active substances in foodstuffs of animal origin, repealing Council Regulation (EEC) No. 2377/90 and amending Directive 2001/82/EC of the European Parliament and of the Council Regulation (EC) No. 726/2004 of the European Parliament and the Council. Off J Eur Union. L152:11–22.
  • Ezenduka EV, Ike OS, Anaelom NJ. 2014. Rapid detection of antimicrobial residues in poultry: a consequence of non-prudent use of antimicrobials. Health. 6(2):149–152.
  • Fagbamila I, Kabir J, Abdu P, Omeiza G, Ankeli P, Ngulukun S, Muhammad M, Umoh J. 2010. Antimicrobial screening of commercial eggs and determination of tetracycline residue using two microbiological methods. Int J Poult Sci. 10:959–962.
  • Ferrini AM, Mannoni V, Aureli P. 2006. Combined Plate Microbial Assay (CPMA): a 6-plate-method for simultaneous first and second level screening of antibacterial residues in meat. Food Addit Contam. 23(1):16–24.
  • Gaudin V, Hedou C, Rault A, Sanders P, Verdon E. 2009. Comparative study of three screening tests, two microbiological tube tests, and a multi-sulphonamide ELISA kit for the detection of antimicrobial and sulphonamide residues in eggs. Food Addit Contam Part A. 26(4):427–440.
  • Gaudin V, Hedou C, Rault A, Verdon E. 2010. Validation of Five Plate Tets, the STAR protocol, for the screening of antibiotic residues in muscle from different animal species according to European Decision 2002/657/EC. Food Addit Contam Part A. 27(7):935–952.
  • Gaudin V, Hedou C, Verdon E. 2009. Validation of a wide-spectrum microbiological tube test, the Explorer® test, for the detection of antimicrobials in muscle from different animal species. Food Addit Contam Part A. 26(8):1162–1171.
  • Gaudin V, Juhel-Gaugain M, Morétain JP, Sanders P. 2008. AFNOR validation of Premi®Test, a microbiological-based screening tube-test for the detection of antimicrobial residues in animal muscle tissue. Food Addit Contam. 25(12):1451–1464.
  • Gaudin V, Maris P, Fuselier R, Ribouchon JL, Cadie N, Rault A. 2004. Validation of a microbiological method: the STAR protocol, a five-plate test, for the screening of antibiotics residues in milk. Food Addit. Contam. 21(5):422–433.
  • Gaudin V, Rault A, Hedou C, Soumet C, Verdon E. 2017. Strategies for the screening of antibiotic residues in eggs: comparison of the validation of the classical microbiological method with an immunobiosensor method. Food Addit Contam Part A. 34:510–1527.
  • Gondová Z, Kožárová I, Poláková Z, Maďarová M. 2014. Comparison of four microbiological inhibition tests for the screening of antimicrobial residues in the tissues of food-producing animals. Ital J Anim Sci. 13:728–734.
  • Gondová Z, Kožárová I. 2012. The NAT test – screening for antibiotic residues in the tissues of food-producing animals. Maso Int. 4:200–202.
  • Granados-Chinchilla F, Rodríguez C. 2017. Tetracyclines in food and feedingstuffs: From regulation to analytical methods, bacterial resistance, and environmental and health implications. J Anal Methods Chem. 2017:1–24.
  • Hagren V. 2009. Food safety testing: rapid molecular methods for chemical and biological hazards [Thesis]. Turku: Painosalama Oy; [accessed 2019 August 28]. https://pdfs.semanticscholar.org/cbe8/fc1d23cab61e8cdeab4ef5bc30127358fc34.pdf.
  • Kožárová I, Janošová J, Máté D, Tkáčiková S. 2009. Evaluation of different microbial inhibition tests for the detection of sulphamethazine residues in the edible tissues of rabbits. Food Addit Contam Part A. 26(7):978–987.
  • Kožárová I, Mačanga J, Goldová M, Major P, Koréneková B. 2009. Comparative study of detection of the presence of selected coccidiostats in the tissues of chickens and pheasants. Potravinarstvo. 2:40–44.
  • Kožárová I, Mačanga J, Goldová M, Major P, Tkáčiková S. 2011. Detection of maduramycin residues in the tissues of chickens and pheasants by screening test for antibiotic residues (STAR). Food Addit Contam Part A. 28(5):608–618.
  • Kožárová I, Máté D, Cabadaj R, Różańska H, Hussein K, Laciaková A. 2002. An evaluation of the microbiological diffusion methods as a tool for screening monensin residues in the tissues of broiler chickens. Folia Veterinaria. 46:27–33.
  • Kožárová I, Máté D. 2000. Evaluation of the sensitivity of individual test organisms to residual concentrations of selected types of anticoccidial drugs. B Vet I Pulawy. 44:187–192.
  • Kožárová I, Šimková J, Mártonová M, Mačanga J, Levkut M. 2011. Detection of lasalocid residues in the tissues of broiler chickens by a new screening test Total antibiotics. Potr. 5(2):45–48.
  • Kožárová I. 2018. Antibiotic residues in poultry products – the current state of the results of residue monitoring in the European Union. Proceedings of Lectures and Posters of the International Scientific Conference “Hygiena Alimentorum XXXVI” Safety and quality of poultry meat, eggs, fishery products and game meat, May 16–18, 2018. Košice: UVMP in Košice; p. 176–180.
  • Myllyniemi AL. 2004. Development of microbiological methods for the detection and identification of antimicrobial residues in meat [Dissertation].Helsinki: Fakulty of Veterinary Medicine, p. 87.
  • Navrátilová P. 2009. Screening methods used for the detection of veterinary drug residues in raw cow milk–a review. Czech J Food Sci. 26(6):393–401.
  • Olejnik M, Szprengier-Juszkiewicz T, Jedziniak P, Śledzińska E, Szymanek-Bany I, Korycińska B, Pietruk K, Zmudzki J. 2011. Residue control of coccidiostats in food of animal origin in Poland during 2007–2010. Food Addit Contam. Part B. 4(4):259–267.
  • Olejnik M, Szprengier-Juszkiewicz T, Jedziniak P. 2009. Multi-residue confirmatory method for the determination of twelve coccidiostats in chicken liver using liquid chromatography tandem mass spectrometry. J Chromatogr A. 1216(46):8141–8148.
  • Picó Y, Barceló D. 2008. The expanding role of LC-MS in analyzing metabolites and degradation products of food contaminants. Trends Anal Chem. 27(10):821–835.
  • Pietruk K, Olejnik M, Posyniak A. 2018. Coccidiostats in milk: development of a multi-residue method and transfer of salinomycin and lasalocid from contaminated feed. Food Addit Contam Part A. 35(8):1508–1518.
  • Pikkemaat MG, Dijk SO, Schouten J, Rapallini M, Egmond HJ. 2008. A new microbial screening method for the detection of antimicrobial residues in slaughter animals: the Nouws antibiotic test (NAT-screening). Food Control. 19(8):781–789.
  • Pikkemaat MG, Rapallini MLBA, Dijk S. O-v, Elferink JWA. 2009. Comparison of three microbial screening methods for antibiotics using routine monitoring samples. Anal Chim Acta. 637(1–2):298–304.
  • Pikkemaat MG, Rapallini M, Zuidema T, Elferink JWA, Oostra-Van Dijk S, Driessen-Van Lankveld W. 2011. Screening methods for the detection of antibiotic residues in slaughter animals: comparison of the European Union Four- Plate Test, the Nouws Antibiotic Test and the Premi®Test (applied to muscle and kidney. Food Addit. Contam Part A. 28(1):26–34.
  • Pikkemaat MG. 2009. Microbial screening methods for detection of antibiotic residues in slaughter animals. Anal Bioanal Chem. 395(4):893–905.
  • R–25. 2013. Screening test for determination of antibiotic residues using five bacterial strain (STAR method). List of official methods for laboratory diagnostic of food and feed. State Veterinary and Food Administration of the Slovak Republic. [accessed 2017 April 25]. https://www.svps.sk/dokumenty/zakladne_info/R_25.pdf. (Slovak)
  • R–26. 2013. Determination of residues of inhibitory substances in meat by the Premi®Test. List of official methods for laboratory diagnostic of food and feed. State Veterinary and Food Administration of the Slovak Republic. [accessed 2017 April 25]. https://www.svps.sk/dokumenty/zakladne_info/R_26.pdf. (Slovak)
  • Radko L, Cybulski W. 2019. The decrease of lasalocid residue in the edible tissues by silymarin supplementation of chicken diet. Food Addit Contam Part A. 36(5):722–728.
  • Roila R, Branciari R, Pecorelli I, Cristofani E, Carloni C, Ranucci D, Fioroni L. 2019. Occurrence and residue concentration of coccidiostats in feed and food of animal origin. Hum Expo Assess Foods. 8(10):477–416.
  • Samandoulougou S, Ilboudo AJ, Bagre TS, Tapsoba FW, Savadogo A, Scippo ML, Traore AS. 2015. Screening of antibiotic residues in beef consumed in Ouagadougou, Burkina Faso. Afr J Food Sci. 9:367–371.
  • Sanz D, Razquin P, Condón S, Juan T, Juan T, Herraiz B, Mata L. 2015. Incidence of antimicrobial residues in meat using a broad spectrum screening strategy. EJNFS. 5(3):156–165.
  • Serraino A, Giacometti F, Marchetti G, Zambrini AV, Zanirato G, Fustini M, Rosmini R. 2013. Survey on antimicrobial residues in raw milk and antimicrobial use in dairy farms in the Emilia-Romagna region, Italy. Ital J Anim Sci. 12:422–425.
  • Shahbazi Y, Hashemi M, Afshari A, Karami N. 2016. A survey of antibiotic residues in commercial eggs in Kermanshah. Iran. Iran J Veterinary Sci Technol. 7:57–62.
  • Sierra D, Sánchez A, Contreras A, Luengo C, Corrales JC, Morales CT, de la Fe C, Guirao I, Gonzalo C. 2009. Detection limits of four antimicrobial residue screening tests for β-lactams in goat’s milk. J Dairy Sci. 92(8):3585–3591.
  • Sophila JR, Raj GD, Kumanan K, Chandra GS, Vairamuthu S. 2018. Microbial inhibition assay for detection of antibiotic residues in chicken meat using vegetative form of Geobacillus stearothermophilus. Pharma Innov J. 7:753–757.
  • Stead S, Sharman M, Tarbin JA, Gibson E, Richmond S, Stark J, Geijp E. 2004. Meeting maximum residue limits: an improved screening technique for the rapid detection of antimicrobial residues in animal food products. Food Addit Contam. 21(3):216–221.
  • Stead S, Stark J. 2012. Bioanalytical screening methods. In: Wang J, MacNeil JD, Kay JF, editors. Chemical analysis of antibiotic residues in food. Hoboken, NJ: John Wiley & Sons, Inc.; p. 153–164.
  • Sterk SS. 2015. Residue control in the European Union, the present and future challenges: experiences from the Netherlands. Procedia Food Sci. 5:278–281.
  • Sýkorová Goffová Z, Kožárová I, Máté D, Marcinčák S, Gondová Z, Sopková D. 2012. Comparison of detection sensitivity of five microbial inhibition tests for the screening of aminoglykozide residues in fortified milk. Czech J Food Sci. 30(4):314–320.
  • Tkáčiková S, Kožárová I, Mačanga J, Levkut M. 2012. Determination of lasalocid residues in the tissues of broiler chickens by liquid chromatography tandem mass spectrometry. Food Addit Contam Part A. 29(5):761–769.
  • Tkáčiková S, Kožárová I, Máté D. 2010. Liquid chromatography tandem chromatography- tandem mass spectrometry determination of maduramycin residues in the tissues of broiler chickens. Food Addit Contam Part A. 27(9):1226–1232.
  • Wang J, MacNeil JD, Kay JF. 2012. Chemical analysis of antibiotic residues in food. Hoboken, NJ: John Wiley & Sons, Inc. p. 384.
  • Wu Q, Peng D, Liu Q, Shabbir MAB, Sajid A, Liu Z, Yuan Z. 2019. A novel microbiological method in microtiter plates for screening seven kinds of widely used antibiotics residues in milk, chicken egg and honey. Front Microbiol. 10:1–14.
  • Wu Q, Zhu Q, Liu Y, Shabbir MAB, Sattar A, Peng D, Tao Y, Chen D, Wang Y, Yuan Z. 2019. A microbiological inhibition method for the rapid, broad-spectrum, and high-throughput screening of 34 antibiotic residues in milk. J Dairy Sci. 102(12):10825–10837.