5,033
Views
57
CrossRef citations to date
0
Altmetric
Papers

Use of biological nano zinc as a feed additive in quail nutrition: biosynthesis, antimicrobial activity and its effect on growth, feed utilisation, blood metabolites and intestinal microbiota

ORCID Icon, ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 324-335 | Received 17 Sep 2020, Accepted 25 Jan 2021, Published online: 17 Feb 2021

References

  • Abd El-Hack ME, Alagawany M, Amer SA, Arif M, Wahdan KM, El-Kholy MS. 2018a. Effect of dietary supplementation of organic zinc on laying performance, egg quality and some biochemical parameters of laying hens. J Anim Physiol Anim Nutr. 102(2):e542–e549.
  • Abd El-Hack ME, Alagawany M, Arif M, Chaudhry MT, Emam M, Patra A. 2017a. Organic or inorganic zinc in poultry nutrition: a review. World Poult Sci J. 73(4):904–915.
  • Abd El-Hack ME, Alagawany M, Chaudhry MT, Saeed M, Ahmad EAM, El-Sayed SAA. 2020. Does the gradual increase in dietary zinc oxide supplementation can affect egg quality, serum indices and productive performance of laying hens? Trop Anim Health Prod. 52(2):525–531.
  • Abd El-Hack ME, Alagawany M, Salah AS, Abdel-Latif MA, Farghly MFA. 2018b. Effects of dietary supplementation of zinc oxide and zinc methionine on layer performance, egg quality, and blood serum indices. Biol Trace Elem Res. 184(2):456–462.
  • Abd El-Hack ME, Mahrose K, Askar AA, Alagawany M, Arif M, Saeed M, Abbasi F, Soomro RN, Siyal FA, Chaudhry MT. 2017a. Single and combined impacts of vitamin a and selenium in diet on productive performance, egg quality, and some blood parameters of laying hens during hot season. Biol Trace Elem Res. 177 (1):169–179.
  • Alagawany M, Abd El-Hack ME, Farag MR, Elnesr SS, El-Kholy MS, Saadeldin IM, Swelum AA. 2018. Dietary supplementation of Yucca schidigera extract enhances productive and reproductive performances, blood profile, immune function, and antioxidant status in laying Japanese quails exposed to lead in the diet. Poult Sci. 97(9):3126–3137.
  • Alagawany M, Abdel-Latif EA, Ibrahim ZA, Reda FM. 2020b. Use of Aspergillus japonicas culture filtrate as a feed additive in quail breeder’s nutrition. Ital J Anim Sci. 19:1291–1298.
  • Alagawany M, El-Hindawy MM, Mohamed LA, Bilal RM, Soomro J. 2020a. The use of cold pressed oils as eco-friendly alternatives for antibiotics in high and low-CP diets of laying Japanese quail. Anim Biotechnol. https://doi.org/https://doi.org/10.1080/10495398.2020.1837846
  • Aliarabi H, Fadayifar A, Tabatabaei MM, Zamani P, Bahari A, Farahavar A, Dezfoulian AH. 2015. Effect of zinc source on hematological, metabolic parameters and mineral balance in lambs. Biol Trace Elem Res. 168(1):82–90.
  • Attia YA, Abd E-HAE, Zeweil HS, Qota EM, Bovera F, Monastra M, Sahledom MD. 2013. Effect of dietary amounts of organic and inorganic Zinc on productive and physiological traits of white peckin ducks. Animal. 7(6):700–895.
  • Attia YA, Addeo NF, Abd Al-Hamid AE, Bovera F. 2019. Effects of phytase supplementation to diets with or without zinc addition on growth performance and zinc utilization of white pekin ducks. Animals. 9(5):280.
  • Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. 2012. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomedicine. 7:6003–6009.
  • Duzguner V, Kaya S. 2007. Effect of zinc on the lipid peroxidation and the antioxidant defense systems of the alloxan-induced diabetic rabbits. Free Rad Biol Med. 42(10):1481–1486.
  • El-Kholy MS, El-Hindawy MM, Alagawany M, Abd El-Hack ME, El-Sayed SAA. 2017. Dietary supplementation of chromium can alleviate negative impacts of heat stress on performance, carcass yield, and some blood hematology and chemistry indices of growing Japanese quail. Biol Trace Elem Res. 179 (1):148–157.
  • El-Rayes T, El-Damrawy S, El-Deeb M, Adel Abdelghany I. 2019. Re/post-hatch nano-zinc supplementations effects on hatchability, growth performance, carcass traits, bone characteristics and physiological status of inshas chicks. EPSJ. 39(4):771–789.
  • El-Saadony MT, Abd El-Hack ME, Taha AE, Fouda MMG, Ajarem JS, Maodaa SN, Allam AA, Elshaer N. 2020. Ecofriendly synthesis and insecticidal application of copper nanoparticles against the storage pest Tribolium castaneum. Nanomaterials. 10(3):587.
  • El-Saadony MT, El-Wafai NA, El-Fattah HIA, Mahgoub SA. 2019. Biosynthesis, optimization and characterization of silver nanoparticles using a soil isolate of Bacillus pseudomycoides MT32 and their antifungal activity against some pathogenic fungi. Adv Anim Vet Sci. 7:238–249.
  • Farag MR, Alagawany M. 2018. Physiological alterations of poultry to the high environmental temperature. J Therm Biol. 76:101–106.
  • Fathi M. 2016. Effects of zinc oxide nanoparticles supplementation on mortality due to ascites and performance growth in broiler chickens. Iran J Appl Anim Sci. 6(2):389–394.
  • Fontecha-Umaña F, Ríos-Castillo AG, Ripolles-Avila C, Rodríguez-Jerez JJ. 2020. Antimicrobial activity and prevention of bacterial biofilm formation of silver and zinc oxide nanoparticle-containing polyester surfaces at various concentrations for use. Foods. 9(4):442..
  • Geetha K, Chellapandian M, Arulnathan N, Ramanathan A. 2020. Nano zinc oxide - an alternate zinc supplement for livestock. Vet World. 13(1):121–126.
  • Ghasemi F, Jalal R. 2016. Antimicrobial action of zinc oxide nanoparticles in combination with ciprofloxacin and ceftazidime against multidrug-resistant Acinetobacter baumannii. J Glob Antimicrob Resist. 6:118–122.
  • Gunalan S, Sivaraj R, Rajendran V. 2012. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci-Mater. 22(6):693–700.
  • He L, Liu Y, Mustapha A, Lin M. 2011. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res. 166(3):207–215.
  • Holla G, Yeluri R, Munshi AK. 2012. Evaluation of minimum inhibitory and minimum bactericidal concentration of nano-silver base inorganic anti-microbial agent (Novaron(®)) against streptococcus mutans . Contemp Clin Dent. 3(3):288–293.
  • Isaei E, Mansouri S, Mohammadi F, Taheritarigh S, Mohammadi Z. 2016. Novel combinations of synthesized ZnO NPs and ceftazidime: Evaluation of their activity against standards and new clinically isolated Pseudomonas aeruginosa. Avicenna J Med Biotechnol. 8(4):169–174.
  • Jiang J, Oberdörster G, Elder A, Gelein R, Mercer P, Biswas P. 2008. Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology. 2(1):33–42.
  • Karthikeyan N, Muthusamy P, Raja A, Vijayarani K, Wilfred Ruban S, Varun CA. 2017. Growth performance and carcass traits as influenced by dietary supplementation of zinc in broiler chicken. Int J Chem Stud. 101(56):101–105.
  • Khan I, Saeed K, Khan I. 2019. Nanoparticles: properties, applications and toxicities. Arab J Chem. 12(7):908–931.
  • Khatri P, Jamdagni P, Sindhu A, Rana JS. 2016. Antimicrobial potential of important medicinal plants of India. Int J Microb Res Technol. 3:301–308.
  • Krishna RR, Ranjit TK, Manna AC. 2011. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 27(7):4020–4028.
  • Kumari P, Kumar H, Kumar I, Sohail M, Pratap SK, Prasad K. 2019. Biosynthesized Zinc Oxide nanoparticles control the growth of Aspergillus flavus and its aflatoxin production. Int J Nano Dimens. 10(4):320–329.
  • Li J, Sang H, Guo H, Popko JT, He L, White JC, Dhankher OP, Jung G, Xing B. 2017. Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. Nanotechnology. 28(15):155101–155108.
  • Mahmoud UT, Abdel-Mohsein HS, Mahmoud MAM, Amen OA, Hassan RIM, Abd-El-Malek AM, Rageb SMM, Waly HS, Othman AA, Osman MA. 2020. Effect of zinc oxide nanoparticles on broilers’ performance and health status. Trop Anim Health Prod. 52(4):2043–2054..
  • Mehendale R, Joshi M, Patravale VB. 2013. Nanomedicines for treatment of viral diseases. Crit Rev Ther Drug Carrier Syst. 30(1):1–49.
  • Mishra PK, Mishra H, Ekielski A, Talegaonkar S, Vaidya B. 2017. Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov Today. 22(12):1825–1834.
  • Mishra M, Paliwal JS, Singh SK, Selvarajan E, Subathradevi C, Mohanasrinivasan V. 2013. Studies on the inhibitory activity of biologically synthesized and characterized zinc oxide nanoparticles using Lactobacillus sporogens against Staphylococcus aureus. J Pure Appl Microbiol. 7(2):1263–1268.
  • Mohamed LA, El-Hindawy MM, Alagawany M, Salah AS, El-Sayed SA. 2019. Effect of low- or high-CP diet with cold-pressed oil supplementation on growth, immunity and antioxidant indices of growing quail. J Anim Physiol Anim Nutr. 103(5):1380–1387.
  • Mohammadi V, Ghazanfari S, Mohammadi-Sangcheshmeh A, Nazaran MH. 2015. Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. Br Poult Sci. 56(4):486–493.
  • Nabi F, Arain MA, Hassan F, Umar M, Rajput N, Alagawany M, Syed SF, Soomro J, Somroo F, Liu J. 2020. Nutraceutical role of selenium nanoparticles in poultry nutrition: a review. World Poult Sci J. 76(3):459–471.
  • Nagarajan P, Rajagopalan V. 2008. Enhanced bioactivity of ZnO nano-particles in an antimicrobial study. Environ Sci Technol. 9(035004):7–15.
  • Narayanan PM, Wilson WS, Abraham AT, Sevanan M. 2012. Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles against human pathogens. BioNanoSci. 2(4):329–335.
  • Narendhran S, Sivaraj R. 2016. Biogenic ZnO nanoparticles synthesized using L. aculeata leaf extract and their antifungal activity against plant fungal pathogens. Bull Mater Sci. 39(1):1–5.
  • Navale GR, Thripuranthaka M, Late DJ, Shinde SS. 2015. Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol Nanomed. 3(1):1033.
  • Padmavathy N, Vijayaraghavan R. 2008. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mat. 9:1–7.
  • Prasad AS. 2008. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp Gerontol. 43(5):370–377.
  • Reda FM, El-Saadony MT, Elnesr SS, Alagawany M, Tufarelli V. 2020. Effect of dietary supplementation of biological curcumin nanoparticles on growth and carcass traits, antioxidant status, immunity and caecal microbiota of Japanese quails. Animals. 10(5):754.
  • Roberson K.D., Edwards Jr. H.M. (1994). Effects of 1,25 dihydroxycholecalciferol and phytase on zinc utilization in broiler chicks Poult. Sci., 73:1312–1316.
  • Sahoo A, Swain RK, Mishra SK, Behura NC, Beura SS, Sahoo C, Das A, Mishra A, Jena B. 2016. Growth, feed conversion efficiency, and carcass characteristics of broiler chicks fed on inorganic, organic and nano zinc supplemented diets. Anim Sci Report. 10(1):10–18.
  • Sangani MH, Nakhaei Moghaddam M, Forghanifard M. 2015. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation. Nanomed J. 2(2):121–128.
  • Sharma N, Singh V, Pandey AK, Mishra BN, Kulsoom M, Dasgupta N, Khan S, El-Enshasy HA, Haque S. 2019. Preparation and evaluation of the zno np-ampicillin/sulbactam nanoantibiotic: optimization of formulation variables using RSM coupled GA method and antibacterial activities. Biomolecules. 9(12):764.
  • Shi LE, Liangying X, Baochao H, Hongjuan G, Xiaofeng G, Zhenxing T. 2010. Inorganic nano mental oxides used as anti-microorganism agents for pathogen control. In: Méndez-Vilas A, editor. Current research, technology and education topics in applied microbiology and microbial biotechnology. Vol. I. Badajoz: FORMATEX; p. 361–368.
  • Singh P, Nanda A. 2013. Antimicrobial and antifungal potential of zinc oxide nanoparticles in comparison to conventional zinc oxide particles. J Chem Pharm Res. 5:457–463.
  • Sinha R, Karan R, Sinha A, Khare SK. 2011. Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol. 102(2):1516–1520.
  • S S, H LJK, K R, M S. 2017. Antimicrobial and antioxidant potentials of biosynthesized colloidal zinc oxide nanoparticles for a fortified cold cream formulation: a potent nanocosmeceutical application. Mater Sci Eng C Mater Biol Appl. 79:581–589.
  • Soren S, Kumar S, Mishra S, Jena PK, Verma SK, Parhi P. 2018. Evaluation of antibacterial and antioxidant potential of the zinc oxide nanoparticles synthesized by aqueous and polyol method. Microb Pathog. 119:145–151.
  • Thati V, Roy AS, Prasad MVNA, Shivannavar CT, Gaddad SM. 2010. Nanostructured Zinc Oxide enhances the activity of antibiotics against Staphylococcus aureus. J Biosci Technol. 1(2):64–69.
  • Tiwari V, Mishra N, Gadani K, Solanki PS, Shah NA, Tiwari M. 2018. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against Carbapenem-Resistant Acinetobacter baumannii. Front Microbiol. 9:1218.
  • Torres CA, Korver DR. 2018. Influences of trace mineral nutrition and maternal flock age on broiler embryo bone development. Poult Sci. 97(8):2996–3003.
  • Wahab R, Dwivedi S, Umar A, Singh S, Hwang IH, Shin HS, Musarrat J, Al-Khedhairy AA, Kim YS. 2013. ZnO nanoparticles induce oxidative stress in cloudman S91 melanoma cancer cells. J Biomed Nanotechnol. 9(3):441–449.
  • Yatoo MI, Dimri U, Gopalakrishnan A, Karthik K, Gopi M, Khandia R, Saminathan M, Saxena A, Alagawany M, Farag MR, et al. 2017. Beneficial health applications and medicinal values of Pedicularis plants: a review. Biomed Pharmacother. 95:1301–1313.