1,005
Views
1
CrossRef citations to date
0
Altmetric
Short communication

Genetic background of calcium and phosphorus phases predicted from milk mid-infrared spectra of Holstein cows

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 777-783 | Received 29 Aug 2020, Accepted 30 Mar 2021, Published online: 24 May 2021

References

  • AIA 2020. Bollettino online. [accessed 2021 March 29]. http://bollettino.aia.it/.
  • ANAFIJ 2019. Index calculation cards. [accessed 2021 March 30]. http://www.anafi.it/it/indici-genetici/schede-di-calcolo-indici.
  • Belay TK, Dagnachew BS, Kowalski ZM, Ådnøy T. 2017. An attempt at predicting blood β-hydroxybutyrate from Fourier-transform mid-infrared spectra of milk using multivariate mixed models in Polish dairy cattle. J Dairy Sci. 100(8):6312–6326.
  • Benedet A, Costa A, De Marchi M, Penasa M. 2020. Heritability estimates of predicted blood β-hydroxybutyrate and nonesterified fatty acids and relationships with milk traits in early-lactation Holstein cows. J Dairy Sci. 103(7):6354–6363.
  • Cassandro M, Comin A, Ojala M, Dal Zotto R, De Marchi M, Gallo L, Carnier P, Bittante G. 2008. Genetic parameters of milk coagulation properties and their relationships with milk yield and quality traits in Italian Holstein cows. J Dairy Sci. 91(1):371–376.
  • Chessa S, Bulgari O, Rizzi R, Calamari L, Bani P, Biffani S, Caroli AM. 2014. Selection for milk coagulation properties predicted by Fourier transform infrared spectroscopy in the Italian Holstein–Friesian breed. J Dairy Sci. 97(7):4512–4521.
  • Costa A, Lopez-Villalobos N, Visentin G, De MM, Cassandro M, Penasa M. 2019a. Heritability and repeatability of milk lactose and its relationships with traditional milk traits, somatic cell score and freezing point in Holstein cows. Animal. 13(5):909–916.
  • Costa A, Visentin G, De Marchi M, Cassandro M, Penasa M. 2019b. Genetic relationships of lactose and freezing point with minerals and coagulation traits predicted from milk mid-infrared spectra in Holstein cows. J Dairy Sci. 102(8):7217–7225.
  • de la Fuente MA, Fontecha J, Juárez M. 1996. Partition of main and trace minerals in milk: effect of ultracentrifugation, rennet coagulation, and dialysis on soluble phase separation. J Agric Food Chem. 44(8):1988–1992.
  • De Marchi M, Toffanin V, Cassandro M, Penasa M. 2014. Invited review: mid-infrared spectroscopy as phenotyping tool for milk traits. J Dairy Sci. 97(3):1171–1186.
  • Franzoi M, Niero G, Penasa M, Cassandro M, De Marchi M. 2018. Technical note: development and validation of a new method for the quantification of soluble and micellar calcium, magnesium, and potassium in milk. J Dairy Sci. 101(3):1883–1888.
  • Franzoi M, Niero G, Penasa M, De Marchi M. 2019. Development of infrared prediction models for diffusible and micellar minerals in bovine milk. Animals. 9(7):430.
  • Gilmour AR, Gogel BJ, Cullis BR, Welham SJ, Thompson R. 2015. ASReml User Guide. Hemel Hempstead, UK: VSN Int Ltd.; p. 364.
  • Górska-Warsewicz H, Rejman K, Laskowski W, Czeczotko M. 2019. Milk and dairy products and their nutritional contribution to the average polish diet. Nutrients. 11(8):1771.
  • Grelet C, Dardenne P, Soyeurt H, Fernandez JA, Vanlierde A, Stevens F, Gengler N, Dehareng F. 2021. Large-scale phenotyping in dairy sector using milk MIR spectra: key factors affecting the quality of predictions. Methods. 186:97–111.
  • Holt C, Jenness R. 1984. Interrelationships of constituents and partition of salts in milk samples from eight species. Comp Biochem Physiol A Comp Physiol. 77(2):275–282.
  • Juhl HV. 2017. Method for compensating amplitude drift in a spectrometer and spectrometer performing said method [accessed 2021 March 29]. https://patents.google.com/patent/US9606050/en?oq=Method+of+standardizing+a+spectrometer.
  • Malacarne M, Franceschi P, Formaggioni P, Sandri S, Mariani P, Summer A. 2014. Influence of micellar calcium and phosphorus on rennet coagulation properties of cows milk. J Dairy Res. 81(2):129–136.
  • Malacarne M, Visentin G, Summer A, Cassandro M, Penasa M, Bolzoni G, Zanardi G, De Marchi M. 2018. Investigation on the effectiveness of mid-infrared spectroscopy to predict detailed mineral composition of bulk milk. J Dairy Res. 85(1):83–86.
  • Soyeurt H, Bruwier D, Romnee J-M, Gengler N, Bertozzi C, Veselko D, Dardenne P. 2009. Potential estimation of major mineral contents in cow milk using mid-infrared spectrometry. J Dairy Sci. 92(6):2444–2454.
  • Syrstad O. 1970. Estimating direct and correlated response to selection. A note for clarification. Acta Agric Scan. 20(3):205–206.
  • Visentin G, Niero G, Berry DP, Costa A, Cassandro M, De Marchi M, Penasa M. 2019. Genetic (co)variances between milk mineral concentration and chemical composition in lactating Holstein–Friesian dairy cows. Animal. 13(3):477–486.
  • Visentin G, Penasa M, Gottardo P, Cassandro M, De Marchi M. 2016. Predictive ability of mid-infrared spectroscopy for major mineral composition and coagulation traits of bovine milk by using the uninformative variable selection algorithm. J Dairy Sci. 99(10):8137–8145.