2,365
Views
4
CrossRef citations to date
0
Altmetric
Review Article

Candidate genes and fatty acids in beef meat, a review

ORCID Icon & ORCID Icon
Pages 1716-1729 | Received 07 Jun 2021, Accepted 04 Oct 2021, Published online: 21 Oct 2021

References

  • Abbas KA, Mohamed A, Jamilah B. 2009. Fatty acids in fish and beef and their nutritional values: a review. J Food Agric Environ. 7(3–4):37–42.
  • Alim MA, Fan YP, Wu XP, Xie Y, Zhang Y, Zhang SL, Sun DX, Zhang Y, Zhang Q, Liu L, et al. 2012. Genetic effects of stearoyl-coenzyme A desaturase (SCD) polymorphism on milk production traits in the Chinese dairy population. Mol Biol Rep. 39(9):8733–8740.
  • Anton I, Kovács K, Holló G, Farkas V, Lehel L, Hajda Z, Zsolnai A. 2011. Effect of leptin, DGAT1 and TG gene polymorphisms on the intramuscular fat of Angus cattle in Hungary. Livest Sci. 135(2–3):300–303.
  • Ardiyanti A, Oki Y, Suda Y, Suzuki K, Chikuni K, Obara Y, Katoh K. 2009. Effects of GH gene polymorphism and sex on carcass traits and fatty acid compositions in Japanese Black cattle. Anim Sci J. 80(1):62–69.
  • Avilés C, Polvillo O, Peña F, Juárez M, Martínez AL, Molina A. 2013. Associations between DGAT1, FABP4, LEP, RORC, and SCD1 gene polymorphisms and fat deposition in Spanish commercial beef. J Anim Sci. 91(10):4571–4577.
  • Avilés C, Peña F, Polvillo O, Barahona M, Campo MM, Sañudo C, Juárez M, Horcada A, Alcalde MJ, Molina A. 2015. Association between functional candidate genes and organoleptic meat traits in intensively-fed beef. Meat Sci. 107:33–38.
  • Barendse W, Bunch RJ, Harrison BE, Thomas MB. 2006. The growth hormone 1 GH1:c.457C>G mutation is associated with intramuscular and rump fat distribution in a large sample of Australian feedlot cattle. Anim Genet. 37(3):211–214.
  • Bartoň L, Kott T, Bureš D, Řehák D, Zahrádková R, Kottová B. 2010. The polymorphisms of stearoyl-CoA desaturase (SCD1) and sterol regulatory element binding protein-1 (SREBP-1) genes and their association with the fatty acid profile of muscle and subcutaneous fat in Fleckvieh bulls. Meat Sci. 85(1):15–20.
  • Bartoň L, Bureš D, Kott T, Řehák D. 2016. Associations of polymorphisms in bovine DGAT1, FABP4, FASN, and PPARGC1A genes with intramuscular fat content and the fatty acid composition of muscle and subcutaneous fat in Fleckvieh bulls. Meat Sci. 114:18–23.
  • Berg J, Streyer L, Tymoczko J, Gatto G. 2019. Biochemistry. 9th ed. New York (NY): W.H. Freeman and Company.
  • Berton MP, Fonseca LFS, Gimenez DFJ, Utembergue BL, Cesar ASM, Coutinho LL, de Lemos MVA, Aboujaoude C, Pereira ASC, Silva RDO, et al. 2016. Gene expression profile of intramuscular muscle in Nellore cattle with extreme values of fatty acid. BMC Genomics. 17(1):1–16.
  • Bjorklund EA, Heins BJ, DiCostanzo A, Chester-Jones H. 2014. Fatty acid profiles, meat quality, and sensory attributes of organic versus conventional dairy beef steers. J Dairy Sci. 97(3):1828–1834.
  • Blecha IMZ, Siqueira F, Ferreira ABR, Feijó GLD, Torres RAA, Medeiros SR, Sousa II, Santiago GG, Ferraz ALJ. 2015. Identification and evaluation of polymorphisms in FABP3 and FABP4 in beef cattle. Genet Mol Res. 14(4):16353–16363.
  • Bordbar F, Jensen J, Zhu B, Wang Z, Xu L, Chang T, Xu L, Du M, Zhang L, Gao H, et al. 2019. Identification of muscle-specific candidate genes in Simmental beef cattle using imputed next generation sequencing. PLoS One. 14(10):e0223671–17.
  • Bordonaro S, Tumino S, Marletta D, De Angelis A, Di Paola F, Avondo M, Valenti B. 2020. Effect of GH p.L127V polymorphism and feeding systems on milk production traits and fatty acid composition in modicana cows. Animals. 10(9):1651–1610.
  • Burt DW. 2009. The cattle genome reveals its secrets. J Biol. 8(4):36.
  • Daley CA, Abbott A, Doyle PS, Nader GA, Larson S. 2010. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr J. 9(1):10.
  • Dannenberger D, Nuernberg G, Scollan N, Schabbel W, Steinhart H, Ender K, Nuernberg K. 2004. Effect of diet on the deposition of n-3 fatty acids, conjugated linoleic and C18:1 trans fatty acid isomers in muscle lipids of German Holstein bulls. J Agric Food Chem. 52(21):6607–6615.
  • Di Stasio L, Sartore S, Albera A. 2002. Lack of association of GH1 and POU1F1 gene variants with meat production traits in Piemontese cattle. Anim Genet. 33(1):61–64.
  • Du M, Tong J, Zhao J, Underwood KR, Zhu M, Ford SP, Nathanielsz PW. 2010. Fetal programming of skeletal muscle development in ruminant animals. J Anim Sci. 88(13):51–60.
  • Du M, Huang Y, Das AK, Yang Q, Duarte MS, Dodson MV, Zhu MJ. 2013. Meat science and muscle biology symposium: manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. J Anim Sci. 91(3):1419–1427.
  • Dubey PK, Goyal S, Yadav AK, Sahoo BR, Kumari N, Mishra SK, Niranjan SK, Arora R, Mukesh M, Kataria RS. 2014. Genetic diversity analysis of the thyroglobulin gene promoter in buffalo and other bovines. Livest Sci. 167(1):65–72.
  • Dujková R, Ranganathan Y, Dufek A, Macák J, Bezdíček J. 2015. Polymorphic effects of FABP4 and SCD genes on intramuscular fatty acid profiles in longissimus muscle from two cattle breeds. Acta Vet Brno. 84(4):327–336.
  • Elmore JS, Mottram DS, Enser M, Wood JD. 2000. The effects of diet and breed on the volatile compounds of cooked lamb. Meat Sci. 55(2):149–159.
  • Enser M, Hallett KG, Hewett B, Fursey GAJ, Wood JD, Harrington G. 1998. Fatty acid content and composition of UK beef and lamb muscle in relation to production system and implications for human nutrition. Meat Sci. 49(3):329–341.
  • FAOSTAT. 2020. Food and Agriculture Organization of the United Nations, Statistical Database; Rome. [accessed 2021 Aug 8]. http://www.fao.org/faostat/en/#home.
  • Flowers S, Hamblen H, Leal-Gutiérrez JD, Elzo MA, Johnson DD, Mateescu RG. 2018. Fatty acid profile, mineral content, and palatability of beef from a multibreed Angus-Brahman population1. J Anim Sci. 96(10):4264–4275.
  • Giri P, Mohapatra B. 2017. Encyclopedia of animal cognition and behavior. Cham, Switzerland: Springer International Publishing AG; p. 1–4.
  • Hausman GJ, Dodson MV, Ajuwon K, Azain M, Barnes KM, Guan LL, Jiang Z, Poulos SP, Sainz RD, Smith S, et al. 2009. Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J Anim Sci. 87(4):1218–1246.
  • Hirwa C. d`A, Wallace P, Shen X, Nie Q, Yang G, Zhang X. 2010. Genes related to economically important traits in beef cattle. Asian J Anim Sci. 5(1):34–45.
  • Hoashi S, Hinenoya T, Tanaka A, Ohsaki H, Sasazaki S, Taniguchi M, Oyama K, Mukai F, Mannen H. 2008. Association between fatty acid compositions and genotypes of FABP4 and LXR-alpha in Japanese Black cattle. BMC Genet. 9(1):3–9.
  • Jaborek JR, Zerby HN, Moeller SJ, Fluharty FL, Relling AE. 2019. Evaluation of feedlot performance, carcass characteristics, carcass retail cut distribution, Warner-Bratzler shear force, and fatty acid composition of purebred Jersey and crossbred Jersey steers. Transl Anim Sci. 3(4):1475–1491.
  • Jeong J, Kwon EG, Im SK, Seo KS, Baik M. 2012. Expression of fat deposition and fat removal genes is associated with intramuscular fat content in longissimus dorsi muscle of Korean cattle steers. J Anim Sci. 90(6):2044–2053.
  • Jiang Z, Michal JJ, Tobey DJ, Daniels TF, Rule DC, MacNeil MD. 2008. Significant associations of stearoyl-CoA desaturase (SCD1) gene with fat deposition and composition in skeletal muscle. Int J Biol Sci. 4(6):345–351.
  • Joo ST, Joo SH, Hwang YH. 2017. The relationships between muscle fiber characteristics, intramuscular fat content, and fatty acid compositions in M. longissimus lumborum of Hanwoo steers. Korean J Food Sci Anim Resour. 37(5):780–786.
  • Jurie C, Cassar-Malek I, Bonnet M, Leroux C, Bauchart D, Boulesteix P, Pethick DW, Hocquette JF. 2007. Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle. J Anim Sci. 85(10):2660–2669.
  • Kaczor U, Famielec M, Dudziak P, Kaczor A, Kucharski M, Mandecki A. 2017. Fatty acid binding protein 4 (FABP4) and thyreoglobulin (TG) polymorphisms in relation to milk performance traits in the Holstein-Friesian cattle. Acta Sci Pol Zootech. 16(4):11–16.
  • Kaplanová K, Dufek A, Dračková E, Simeonovová J, Šubrt J, Vrtková I, Dvořák J. 2013. The association of CAPN1, CAST, SCD, and FASN polymorphisms with beef quality traits in commercial crossbred cattle in the Czech Republic. Czech J Anim Sci. 58(11):489–496.
  • Kay JK, Mackle TR, Auldist MJ, Thomson NA, Bauman DE. 2004. Endogenous synthesis of cis-9, trans-11 conjugated linoleic acid in dairy cows fed fresh pasture. J Dairy Sci. 87(2):369–378.
  • Kelava Ugarković N, Ivanković A, Konjačić M. 2013. Effect of breed and age on beef carcass quality, fatness and fatty acid composition. Arch Anim Breed. 56(1):958–970.
  • Kelly MJ, Tume RK, Newman S, Thompson JM. 2013. Genetic variation in fatty acid composition of subcutaneous fat in cattle. Anim Prod Sci. 53(2):129–133.
  • Lemos M. d, Pereira ASC, Regatieri IC, Feitosa FLB, Baldi F. 2017. Genetic factors that determine the meat fatty acids composition. In: Catala A, editor. Fattty acids. London: Intech Open Science; p. 221–237.
  • Li C, Aldai N, Vinsky M, Dugan MER, McAllister TA. 2012. Association analyses of single nucleotide polymorphisms in bovine stearoyl-CoA desaturase and fatty acid synthase genes with fatty acid composition in commercial cross-bred beef steers. Anim Genet. 43(1):93–97.
  • Listrat A, Gagaoua M, Andueza D, Gruffat D, Normand J, Mairesse G, Picard B, Hocquette JF. 2020. What are the drivers of beef sensory quality using metadata of intramuscular connective tissue, fatty acids and muscle fiber characteristics? Livest Sci. 240(4):104209.
  • López-Pedrouso M, Rodríguez-Vázquez R, Purriños L, Oliván M, García-Torres S, Sentandreu MÁ, Lorenzo JM, Zapata C, Franco D. 2020. Sensory and physicochemical analysis of meat from bovine breeds in different livestock production systems, pre-slaughter handling conditions, and ageing time. Foods. 9(2):176–117.
  • Maharani D, Jung Y, Jung WY, Jo C, Ryoo SH, Lee SH, Yeon SH, Lee JH. 2012. Association of five candidate genes with fatty acid composition in Korean cattle. Mol Biol Rep. 39(5):6113–6121.
  • Mannen H. 2011. Identification and utilization of genes associated with beef qualities. Anim Sci J. 82(1):1–7.
  • Mannen H. 2012. Genes associated with fatty acid composition of beef. FSTR. 18(1):1–6.
  • Matsuhashi T, Maruyama S, Uemoto Y, Kobayashi N, Mannen H, Abe T, Sakaguchi S, Kobayashi E. 2011. Effect of bovine fatty acid synthase, stearoyl-coenzyme A desaturase, sterol regulatory element-binding protein 1, and growth hormone gene polymorphisms on fatty acid composition and carcass traits in Japanese Black cattle. J Anim Sci. 89(1):12–22.
  • Milanesi E, Nicoloso L, Crepaldi P. 2008. Stearoyl CoA desaturase (SCD) gene polymorphisms in Italian cattle breeds. J Anim Breed Genet. 125(1):63–67.
  • Momot M, Nogalski Z, Pogorzelska‐Przybyłek P, Sobczuk‐Szul M. 2020. Influence of genotype and slaughter age on the content of selected minerals and fatty acids in the longissimus thoracis muscle of crossbred bulls. Animals. 10(11):2004–2012.
  • Morris CA, Cullen NG, Glass BC, Hyndman DL, Manley TR, Hickey SM, McEwan JC, Pitchford WS, Bottema CDK, Lee MAH. 2007. Fatty acid synthase effects on bovine adipose fat and milk fat. Mamm Genome. 18(1):64–74.
  • Mozaffarian D, Ascherio A, Hu FB, Stampfer MJ, Willett WC, Siscovick DS, Rimm EB. 2005. Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation. 111(2):157–164.
  • Müller H, Jordal O, Seljeflot I, Kierulf P, Kirkhus B, Ledsaak O, Pedersen JI. 1998. Effect on plasma lipids and lipoproteins of replacing partially hydrogenated fish oil with vegetable fat in margarine. Br J Nutr. 80(3):243–251.
  • Nagy K, Tiuca ID. 2017. Importance of fatty acids in physiopathology of human vody. In: Catala A, editor. Fatty acids. London: Intech Open Science; p. 3–22.
  • Narukami T, Sasazaki S, Oyama K, Nogi T, Taniguchi M, Mannen H. 2011. Effect of DNA polymorphisms related to fatty acid composition in adipose tissue of Holstein cattle. Anim Sci J. 82(3):406–411.
  • Ntambi JM. 2013. Stearoyl-CoA desaturase-1Is a biological regulator of energy homeostasis. In: Ntambi JM, editor. Stearoyl-CoA desaturase genes in lipid metabolism. Medison (WI): Springer-Verlag New York; p. 27–37.
  • Oh D, Lee Y, La B, Yeo J, Chung E, Kim Y, Lee C. 2012. Fatty acid composition of beef is associated with exonic nucleotide variants of the gene encoding FASN. Mol Biol Rep. 39(4):4083–4090.
  • Ohsaki H, Sawa T, Sasazaki S, Kano K, Taniguchi M, Mukai F, Mannen H. 2007. Stearoyl-CoA desaturase mRNA expression during bovine adipocyte differentiation in primary culture derived from Japanese Black and Holstein cattle. Comp Biochem Physiol A Mol Integr Physiol. 148(3):629–634.
  • Oprządek J, Fliskowski K, Zwierzchowski L, Juszczuk-Kubiak E, Rosochacki S, Dymnicki E. 2005. Associations between polymorphism of some candidate genes and growth rates, feed intake and utilisation, slaughter indicators and meet quality in cattle. Arch Tierz. 48:81–87.
  • Pannier L, Mullen AM, Hamill RM, Stapleton PC, Sweeney T. 2010. Association analysis of single nucleotide polymorphisms in DGAT1, TG and FABP4 genes and intramuscular fat in crossbred Bos taurus cattle. Meat Sci. 85(3):515–518.
  • Papaleo Mazzucco J, Goszczynski DE, Ripoli MV, Melucci LM, Pardo AM, Colatto E, Rogberg-Muñoz A, Mezzadra CA, Depetris GJ, Giovambattista G, Villarreal EL. 2016. Growth, carcass and meat quality traits in beef from Angus, Hereford and cross-breed grazing steers, and their association with SNPs in genes related to fat deposition metabolism. Meat Sci. 114:121–129.
  • Park SJ, Beak SH, Jung DJS, Kim SY, Jeong IH, Piao MY, Kang HJ, Fassah DM, Na SW, Yoo SP, Baik M. 2018. Genetic, management, and nutritional factors affecting intramuscular fat deposition in beef cattle - A review. Asian-Australas J Anim Sci. 31(7):1043–1061.
  • Prado JM, Prado IN, Visentainer JV, Rotta PP, Perotto D, Moletta JL, Prado IM, Ducatti T. 2009. The effect of breed on the chemical composition and fatty acid profile of the Longissimus dorsi muscle of Brazilian beef cattle. J Anim Feed Sci. 18(2):231–240.
  • Raza SHA, Khan S, Amjadi M, Abdelnour SA, Ohran H, Alanazi KM, Abd El-Hack ME, Taha AE, Khan R, Gong C, Schreurs NM, et al. 2020. Genome-wide association studies reveal novel loci associated with carcass and body measures in beef cattle. Arch Biochem Biophys. 694:108543.
  • Razmaite V, Šiukščius A, Šveistiene R, Bliznikas S, Jatkauskiene V. 2020. Relationships between fat and cholesterol contents and fatty acid composition in different meat-producing animal species. Acta Vet Br. 70(3):1–12.
  • Ressurreccion AVA. 2004. Sensory aspects of consumer choices for meat and meat products. Meat Sci. 66:11–20.
  • Roy R, Taourit S, Zaragoza P, Eggen A, Rodellar C. 2005. Genomic structure and alternative transcript of bovine fatty acid synthase gene (FASN): comparative analysis of the FASN gene between monogastric and ruminant species. Cytogenet Genome Res. 111(1):65–73.
  • Sasago N, Abe T, Sakuma H, Kojima T, Uemoto Y. 2017. Genome-wide association study for carcass traits, fatty acid composition, chemical composition, sugar, and the effects of related candidate genes in Japanese Black cattle. Anim Sci J. 88(1):33–44.
  • Schlee P, Graml R, Rottmann O, Pirchner F. 1994. Influence of growth‐hormone genotypes on breeding values of Simmental bulls. J Anim Breed Genet. 111(1–6):253–256.
  • Sevane N, Armstrong E, Wiener P, Pong Wong R, Dunner S, GemQual Consortium. 2014. Polymorphisms in twelve candidate genes are associated with growth, muscle lipid profile and meat quality traits in eleven European cattle breeds. Mol Biol Rep. 41(7):4721–4731.
  • Silveira LGG, Furlan LR, Curi RA, Ferraz ALJ, de Alencar MM, Regitano LCA, Martins CL, de Beni Arrigoni M, Suguisawa L, Silveira AC, et al. 2008. Growth hormone 1 gene (GH1) polymorphisms as possible markers of the production potential of beef cattle using the Brazilian Canchim breed as a model. Genet Mol Biol. 31(4):874–879.
  • Sink JD. 1973. Lipid-soluble components of meat flavors/odors and their biochemical origin. J Am Oil Chem Soc. 50(11):470–474.
  • Soliman GA. 2018. Dietary cholesterol and the lack of evidence in cardiovascular disease. Nutrients. 10(6):780.
  • Sørensen P, Grochowska R, Holm L, Henryon M, Løvendahl P. 2002. Polymorphism in the bovine growth hormone gene affects endocrine release in dairy calves. J Dairy Sci. 85(7):1887–1893.
  • Taniguchi M, Utsugi T, Oyama K, Mannen H, Kobayashi M, Tanabe Y, Ogino A, Tsuji S. 2004. Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in Japanese Black cattle. Mamm Genome. 15(2):142–148.
  • Tellam RL, Lemay DG, Van Tassell CP, Lewin HA, Worley KC, Elsik CG. 2009. Unlocking the bovine genome. BMC Genomics. 10:193.
  • Thaller G, Kühn C, Winter A, Ewald G, Bellmann O, Wegner J, Zühlke H, Fries R. 2003. DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Anim Genet. 34(5):354–357.
  • Timón ML, Ventanas J, Carrapiso AI, Jurado A, García C. 2001. Subcutaneous and intermuscular fat characterisation of dry-cured Iberian hams. Meat Sci. 58(1):85–91.
  • Urrutia O, Mendizabal JA, Alfonso L, Soret B, Insausti K, Arana A. 2020. Adipose tissue modification through feeding strategies and their implication on adipogenesis and adipose tissue metabolism in ruminants. Int J Mol Sci. 21(9):3183.
  • Usman MT, Tanko AS, Alhassan AJ. 2015. Effects of water soaking on the nutritional compositions of beef in Nigeria: a review. Int J Chem Biomol Sci. 1(3):129–133.
  • [USDA] U.S. Department of Agriculture (US). 1989. FoodData central, (US).
  • Vahmani P, Mapiye C, Prieto N, Rolland DC, McAllister TA, Aalhus JL, Dugan MER. 2015. The scope for manipulating the polyunsaturated fatty acid content of beef: a review. J Anim Sci Biotechnol. 6(1):1–13.
  • Wang Z, Zhu B, Niu H, Zhang W, Xu L, Xu L, Chen Y, Zhang L, Gao X, Gao H, et al. 2019. Genome wide association study identifies SNPs associated with fatty acid composition in Chinese Wagyu cattle. J Anim Sci Biotechnol. 10(1):1–13.
  • Wyness L. 2013. Nutritional aspects of red meat in the diet. In: Wood JD, Rowlings C, editors. Nutrition and climate change: major issues confronting the meat industry. Leicestershire: Nottingham University Press; p. 1–22.
  • Wood JD, Enser M, Richardson RI, Whittington FM. 2007. Fatty acids in meat and meat products. In: Chow CK, editor. Fatty acids in foods and their health implications. 3rd ed. Boca Raton (FL): CRP Press; p. 87–107.
  • Yardibi H, Gürsel FE, Ates A, Akıs I, Hosturk GT. 2013. BTN1A1, FABP3 and TG genes polymorphism in East Anatolian red cattle breed and South Anatolian red cattle breed. African J Biotechnol. 12(20):2802–2807.
  • Yeon SH, Lee SH, Choi BH, Lee HJ, Jang GW, Lee KT, Kim KH, Lee JH, Chung HY. 2013. Genetic variation of FASN is associated with fatty acid composition of Hanwoo. Meat Sci. 94(1):133–138.
  • Zhang S. 2008. Genetic regulation of the healthfulness of beef fatty acid composition [dissertation]. Ames (IA): Iowa State University.
  • Zhu B, Niu H, Zhang W, Wang Z, Liang Y, Guan L, Guo P, Chen Y, Zhang L, Guo Y, et al. 2017. Genome wide association study and genomic prediction for fatty acid composition in Chinese Simmental beef cattle using high density SNP array. BMC Genomics. 18(1):1–15.