1,458
Views
1
CrossRef citations to date
0
Altmetric
Papers

Innovating feeding strategies in dairy sheep farming can reduce environmental impact of ewe milk

ORCID Icon, , , , , & ORCID Icon show all
Pages 2147-2164 | Received 07 Feb 2021, Accepted 01 Nov 2021, Published online: 23 Nov 2021

References

  • Annicchiarico P. 2017. Feed legumes for truly sustainable crop-animal systems. Ital J Agronomy. 12(2):151–160.
  • ANZ. 2018. Anagrafe nazionale Zootecnica. http://statistiche.izs.it.
  • Arriaga H, Pinto M, Calsamiglia S, Merino P. 2009. Nutritional and management strategies on nitrogen and phosphorus use efficiency of lactating dairy cattle on commercial farms: an environmental perspective. J Dairy Sci. 92(1):204–215.
  • Atzori AS, Molle G, Decandia M, Vagnoni E, Sanna L, Arca P, Duce P, Franca A, Porqueddu C. 2017. Review on LCA approaches and GHG mitigation actions in sheep supply chain. Report of EU LIFE project “Sheep to Ship” LIFE15 CCM/IT/000123. http://www.sheeptoship.eu/images/Report/A.2.1_Review_LCA_studies.pdf.
  • Baldini C, Gardoni D, Guarino M. 2017. A critical review of the recent evolution of Life Cycle Assessment applied to milk production. J Clean Prod. 140:421–435.
  • Batalla I, Knudsen MT, Mogensen L, del Hierro Ó, Pinto M, Hermansen JE. 2015. Carbon footprint of milk from sheep farming systems in Northern Spain including soil carbon sequestration in grasslands. J Clean Prod. 104:121–129.
  • Berckmans D. 2017. General introduction to precision livestock farming. Anim Front. 7(1):6–11.
  • Bhatt A, Abbassi B. 2021. Review of environmental performance of sheep farming using life cycle assessment. J Clean Prod. 293:126192.
  • Buccioni A, Serra A, Minieri S, Mannelli F, Cappucci A, Benvenuti D, Rapaccini S, Conte G, Mele M. 2015. Milk production, composition, and milk fatty acid profile from grazing sheep fed diets supplemented with chestnut tannin extract and extruded linseed. Small Ruminant Res. 130:200–207.
  • Cannas A, Tedeschi LO, Atzori AS, Lunesu MF. 2019. How can nutrition models increase the production efficiency of sheep and goat operations? Anim Front. 9(2):33–44.
  • Cannas A, Tedeschi LO, Fox DG, Pell AN, Van Soest PJ. 2004. A mechanistic model for predicting the nutrient requirements and feed biological values for sheep. J Anim Sci. 82(1):149–169.
  • Chilliard Y, Glasser F, Ferlay A, Bernard L, Rouel J, Doreau M. 2007. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur J Lipid Sci Technol. 109(8):828–855.
  • Cederberg C, Mattsson B. 2000. Life cycle assessment of milk production - a comparison of conventional and organic farming. J Clean Prod. 8(1):49–60.
  • Colomb V, Ait SA, Mens CB, Gac A, Gaillard G, Koch P, Mousset J, Salou T, Tailleur A, van der Werf HMG. 2015. AGRIBALYSE®, the French LCI Database for agricultural products: high quality data for producers and environmental labelling. OCL - Oilseeds Fats. 22(1):D104.
  • de Rancourt M, Carrère L. 2011. Milk sheep production systems in Europe: diversity and main trends. In: Bernués A, Boutonnet JP, Casasús I, Chentouf M, Gabiña D, Joy M, López-Francos A, Morand-Fehr P, Pacheco F, editors. Economic, social and environmental sustainability in sheep and goat production systems. Zaragoza, Spain: CIHEAM/FAO/CITA- DGA; p. 107–111.
  • de Vries M, de Boer IJM. 2010. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest Sci. 128(1–3):1–11.
  • EPD 2016. Arable crops (2013:05 v. 2.0). Product category classification: UN CPC 011, 014, 017, 019. Available online at: https://test1.environdec.com/PCR/Detail/?Pcr=8804.
  • Ershadi SZ, Dias G, Heidari MD, Pelletier N. 2020. Improving nitrogen use efficiency in crop-livestock systems: A review of mitigation technologies and management strategies, and their potential applicability for egg supply chains. J Clean Prod. 265:121671.
  • Escribano M, Elghannam A, Mesias FJ. 2020. Dairy sheep farms in semi-arid rangelands: a carbon footprint dilemma between intensification and land-based grazing. Land Use Policy. 95:104600.
  • European Dairy Association. 2018. Product environmental footprint category rules for dairy products. Brussels, Belgium: European Dairy Association.
  • FAO. 2016b. Environmental performance of animal feeds supply chains: guidelines for assessment. Livestock environmental assessment and performance partnership. Rome, Italy: FAO. http://www.fao.org/3/a-mj751e.pdf.
  • FAO. 2018. Measuring and modelling soil carbon stocks and stock changes in livestock production systems. Rome. http://www.fao.org/3/I9693EN/i9693en.pdf.
  • FAO. 2016a. Greenhouse gas emissions and fossil energy use from small ruminant supply chains: guidelines for assessment. Livestock environmental assessment and performance partnership. Rome, Italy: FAO. http://www.fao.org/3/a-i6434e.pdf.
  • FAOSTAT. 2021. Livestock primary statistics. (accessed 2021 July 20). http://www.fao.org/faostat/en/#data/QL.
  • Frischknecht R, Braunschweig A, Hofstetter P, Suter P. 2000. Modelling human health effects of radioactive releases in Life Cycle Impact Assessment. Environ. Impact Assess. 20(2):159–189.
  • Frischknecht R, Steiner R, Jungbluth N. 2008. The Ecological Scarcity Method – EcoFactors 2006. A method for impact assessment in LCA. Environmental studies no. 0906. Federal Office for the Environment (FOEN), Bern.
  • Garnier-Laplace JC, Beaugelin-Seiller K, Gilbin R, Della-Vedova C, Jolliet O, Payet J. 2008. A Screening Level Ecological Risk Assessment and ranking method for liquid radioactive and chemical mixtures released by nuclear facilities under normal operating conditions. Proceedings of the International conference on radioecology and environmental protection, 15-20 june 2008, Bergen.
  • Gerber PJ, Hristov AN, Henderson B, Makkar H, Oh J, Lee C, Meinen R, Montes F, Ott T, Firkins J, et al. 2013. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review. Animal. 7(2):220–234.
  • Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G. 2013a. Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Rome, Italy: FAO.
  • Gonzalez LA, Kyriazakis I, Tedeschi LO. 2018. Review: precision nutrition of ruminants: approaches, challenges and potential gains. Animal. 12(s2):s246–S261.
  • Greco SL, Wilson AM, Spengler JD, Levy JI. 2007. Spatial patterns of mobile source particulate matter emissions-to-exposure relationships across the United States. Atmos. Environ. 41(5):1011–1025.
  • Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, de Koning A, Van Oers L, Wegener Sleeswijk A, Suh S, Udo de Haes HA, et al. 2002. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards. Series: Eco-efficiency in industry and science. Kluwer Academic Publishers, Dordrecht.
  • Henderson B, Falcucci A, Mottet A, Early L, Werner B, Steinfeld H, Gerber P. 2017. Marginal costs of abating greenhouse gases in the global ruminant livestock sector. Mitig Adapt Strateg Glob Change. 22(1):199–224.
  • Humbert S. 2009. Geographically Differentiated Life-cycle Impact Assessment of Human Health [Doctoral dissertation]. Berkeley, California, USA: University of California.
  • IPCC. 2006. Vol 4 Agriculture, Forestry and Other Land Use, chapters 10 and 11. In: IPCC, Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K, editors. Guidelines for national greenhouse gas inventories, prepared by the national green- house gas inventories programme. Japan: IGES.
  • IPCC 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, p. 1535.
  • ISO 14040. 2006. Environmental management – life cycle assessment – principles and framework. Geneva, Switzerland: International Standards Organization.
  • ISO 14044. 2006. Environmental management – life cycle assessment − requirements and guidelines. Geneva, Switzerland: International Standards Organization.
  • ISPRA, 2021. Italian greenhouse gas inventory 1990–2019. National inventory report 2021. Rapporto 341/2021, Roma. https://www.isprambiente.gov.it/it/pubblicazioni/rapporti/italian-greenhouse-gas-inventory-1990-2019-national-inventory-report-2021.
  • ISTAT, 2010. Italian national census for agriculture, Roma. https://www.istat.it/it/censimenti-permanenti/censimenti-precedenti/agricoltura/agricoltura-2010.
  • ISTAT, 2017. Agricoltura e zootecnia. (accessed 2017 January 22). http://www.istat.it.
  • Leip A, Billen G, Garnier J, Grizzetti B, Lassaletta L, Reis S, Simpson D, Sutton MA, de Vries W, Weiss F, et al. 2015. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ Res Lett. 10(11):115004.
  • Lima PR, Apdini T, Freire AS, Santana AS, Moura LML, Nascimento JCS, Rodrigues RTS, Dijkstra J, Garcez Neto AF, Queiroz MAÁ, et al. 2019. Dietary supplementation with tannin and soybean oil on intake, digestibility, feeding behavior, ruminal protozoa and methane emission in sheep. Anim Feed Sci Technol. 249:10–17.
  • Lovarelli D, Bacenetti J, Guarino M. 2020. A review on dairy cattle farming: is precision livestock farming the compromise for an environmental, economic and social sustainable production? J Clean Prod. 262:121409.
  • Marino R, Atzori AS, D'Andrea M, Iovane G, Trabalza-Marinucci M, Rinaldi L. 2016. Climate change: Production performance, health issues, greenhouse gas emissions and mitigation strategies in sheep and goat farming. Small Ruminant Res. 135:50–59.
  • Masoni A, Lulli L, Mariotti, M, Cisternino A. 2010. Piano di concimazione per le colture erbacee di pieno campo. In: Felici, editor. Riduzione dell’inquinamento delle acque dai nitrati provenienti dall’agricoltura. 267–315, Pisa, Italy.
  • McClelland SC, Arndt C, Gordon DR, Thoma G. 2018. Type and number of environmental impact categories used in livestock life cycle assessment: a systematic review. Livest Sci 209:39–45.
  • Mele M, Contarini G, Cercaci L, Serra A, Buccioni A, Povolo M, Conte G, Funaro A, Banni S, Lercker G, et al. 2011. Enrichment of Pecorino cheese with conjugated linoleic acid by feeding dairy ewes with extruded linseed: effect on fatty acid and triglycerides composition and on oxidative stability. Int Dairy J. 21(5):365–372.
  • Morgan-Davies C, Lambe N, Wishart H, Waterhouse T, Kenyon F, McBean D, McCracken D. 2018. Impacts of using a precision livestock system targeted approach in mountain sheep flocks. Livest Sci. 208:67–76.
  • Nemecek T, Hayer F, Bonnin E, Carrouée B, Schneider A, Vivier C. 2015. Designing eco-efficient crop rotations using life cycle assessment of crop combinations. Eur J Agron. 65:40–51.
  • Nemecek T, Huguenin-Elie O, Dubois D, Gaillard G, Schaller B, Chervet A. 2011. Life cycle assessment of Swiss farming systems: II. Extensive and intensive production. Agr Syst. 104(3):233–245.
  • O’Brien D, Bohan A, McHugh N, Shalloo L. 2016. A life cycle assessment of the effect of intensification on the environmental impacts and resource use of grass-based sheep farming. Agr Syst. 148:95–104.
  • Odintsov Vaintrub M, Levit H, Chincarini M, Fusaro I, Giammarco M, Vignola G. 2021. Review: precision livestock farming, automats and new technologies: possible applications in extensive dairy sheep farming. Animal. 15(3):100143.
  • Oers van L, de Koning A, Guinee JB, Huppes G. 2002. Abiotic Resource Depletion in LCA. Improving characterization factors for abiotic resource depletion as recommended in the new Dutch LCA Handbook. Road and Hydraulic Engineering Institute, Ministry of Transport and Water, Amsterdam.
  • Patra AK. 2014. A meta-analysis of the effect of dietary fat on enteric methane production, digestibility and rumen fermentation in sheep, and a comparison of these responses between cattle and sheep. Livest Sci. 162:97–103.
  • Posch M, Seppälä J, Hettelingh JP, Johansson M, Margni M, Jolliet O. 2008. The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA. Int J Life Cycle Assess. 13(6):477–486.
  • Pulina G, Francesconi AHD, Stefanon B, Sevi A, Calamari L, Lacetera N, Dell’Orto V, Pilla F, Ajmone Marsan P, Mele M, et al. 2017. Sustainable ruminant production to help feed the planet. Ital J Anim Sci. 16(1):140–171.
  • Pulina G, Milán MJ, Lavín MP, Theodoridis A, Morin E, Capote J, Thomas DL, Francesconi AHD, Caja G. 2018. Invited review: current production trends, farm structures, and economics of the dairy sheep and goat sectors. J Dairy Sci. 101(8):6715–6729.
  • Pulina G, Nudda A. 2002. Milk production. In: Pulina G, editor. Dairy sheep fedding and nutrition. Bologna, Italy: Avenue Media; p. 11–13.
  • Rabl A, Spadaro JV. 2004. The RiskPoll software, version is 1.051 (dated August 2004). www.arirabl.com.
  • R Core Team. 2018. R: a language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing. https://www.R-project.org/.
  • Reckling M, Bergkvist G, Watson CA, Stoddard FL, Zander PM, Walker RL, Pristeri A, Toncea I, Bachinger J. 2016. Trade-offs between economic and environmental impacts of introducing legumes into cropping systems. Front Plant Sci. 7:615–669.
  • Regione Toscana. 2020. Regional hydrological and geological sector, 2020. https://www.sir.toscana.it/consistenza-rete.
  • Rosenbaum RK, Bachmann TM, Gold LS, Huijbregts MAJ, Jolliet O, Juraske R, Koehler A, Larsen HF, MacLeod M, Margni M, et al. 2008. USEtox - The UNEP-SETAC toxicity model: recommended characterization factors for human toxicity and freshwater ecotoxicity in Life Cycle Impact Assessment. Int J Life Cycle Assess. 13(7):532–546.
  • Sabia E, Gauly M, Napolitano F, Serrapica F, Cifuni GF, Claps S. 2020. Dairy sheep carbon footprint and ReCiPe end-point study. Small Rumin Res 185:106085.
  • Sarkar R, Corriher-Olson V, Long C, Somenahally A. 2020. Challenges and potentials for soil organic carbon sequestration in forage and grazing systems. Rangeland Ecol Manage. 73(6):786–795.
  • Seppälä J, Posch M, Johansson M, Hettelingh JP. 2006. Country-dependent Characterization factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator. Int J Life Cycle Assessment. 11(6):403–416.
  • Sintori A, Liontakis A, Tzouramani I. 2019. Assessing the environmental efficiency of Greek dairy sheep farms: GHG emissions and mitigation potential. Agriculture (Switzerland). 9(2):28.
  • Soussana JF, Tallec T, Blanfort V. 2010. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal. 4(3):334–350.
  • Struijs J, Beusen A, van Jaarsveld H, Huijbregts MAJ. 2009. Aquatic Eutrophication. Chapter 6 in: Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., De Schryver, A., Struijs, J., Van Zelm, R. (2009) ReCiPe 2008 A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterization factors, first edition, The Hague.
  • Uwizeye A, Gerber PJ, Schulte RPO, De Boer IJM. 2016. A comprehensive framework to assess the sustainability of nutrient use in global livestock supply chains. J Clean Prod. 129:647–658.
  • Vagnoni E, Franca A. 2018. Transition among different production systems in a Sardinian dairy sheep farm: environmental implications. Small Rumin Res. 159:62–68.
  • Vagnoni E, Franca A, Breedveld L, Porqueddu C, Ferrara R, Duce P. 2015. Environmental performances of Sardinian dairy sheep production systems at different input levels. Sci Total Environ. 502:354–361.
  • Van Der Werf HMG, Petit J, Sanders J. 2005. The environmental impacts of the production of concentrated feed: the case of pig feed in Bretagne. Agr Syst. 83(2):153–177.
  • Vargas-Bello-Pérez E, Darabighane B, Miccoli FE, Gómez-Cortés P, Gonzalez-Ronquillo M, Mele M. 2021. Effect of dietary vegetable sources rich in unsaturated fatty acids on milk production, composition, and cheese fatty acid profile in sheep: a meta-analysis. Front Vet Sci. 8: 641364.
  • Vasta V, Daghio M, Cappucci A, Buccioni A, Serra A, Viti C, Mele M. 2019. Invited review: plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: experimental evidence and methodological approaches. J Dairy Sci. 102(5):3781–3804.
  • Wathes CM, Kristensen HH, Aerts JM, Berckmans D. 2008. Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Comput Electron Agr. 64(1):2–10.
  • Weiss F, Leip A. 2012. Greenhouse gas emissions from the EU livestock sector: a life cycle assessment carried out with the CAPRI model. Agric Ecosyst Environ. 149:124–134.
  • Wilfart A, Espagnol S, Dauguet S, Tailleur A, Gac A, Garcia-Launay F. 2016. ECOALIM: a dataset of environmental impacts of feed ingredients used in French animal production. PLoS One. 11(12):e0167343–17.
  • WMO 1999. Scientific Assessment of Ozone Depletion: 1998. Global Ozone Research and Monitoring Project - Report No. 44, Geneva.
  • Wolf MA, Pant R, Chomkhamsri K, Sala S, Pennington D. 2012. International reference life cycle data system (ILCD) handbook – towards more sustainable production and consumption for a resource-efficient Europe. Luxembourg: European Commission – Joint Research Centre Publications Office of the European Union. JRC reference report, EUR 24982 EN.
  • Zuidhof MJ. 2020. Precision livestock feeding: matching nutrient supply with nutrient requirements of individual animals. J Appl Poult Res. 29(1):11–14.