1,497
Views
2
CrossRef citations to date
0
Altmetric
Papers

Dietary 5-aminolevulinic acid supplementation improves growth performance, nutrient utilisation, iron status and antioxidant capacity of broilers

ORCID Icon, , , , , & ORCID Icon show all
Pages 445-454 | Received 07 Dec 2021, Accepted 24 Jan 2022, Published online: 24 Feb 2022

References

  • Attia YA, Al-Harthi MA, Abo El-Maaty HM. 2020. The effects of different oil sources on performance, digestive enzymes, carcass traits, biochemical, immunological, antioxidant, and morphometric responses of broiler chicks. Front Vet Sci. 7:181.
  • Balogh E, Chowdhury A, Ababneh H, Csiki DM, Tóth A, Jeney V. 2021. Heme-mediated activation of the Nrf2/HO-1 axis attenuates calcification of valve interstitial cells. Biomedicines. 9(4):427.
  • Campbell NK, Fitzgerald HK, Dunne A. 2021. Regulation of inflammation by the antioxidant haem oxygenase 1. Nat Rev Immunol. 21(7):411–425.
  • Cao J, Luo XG, Henry PR, Ammerman CB, Littell RC, Miles RD. 1996. Effect of dietary iron concentration, age, and length of iron feeding on feed intake and tissue iron concentration of broiler chicks for use as a bioassay of supplemental iron sources. Poult Sci. 75(4):495–504.
  • Chen YJ, Kim IH, Cho JH, Min BJ, Yoo JS, Wang Q. 2008a. Effect of δ-aminolevulinic acid on growth performance, nutrient digestibility, blood parameters and the immune response of weanling pigs challenged with Escherichia coli lipopolysaccharide. Livest Sci. 114(1):108–116.
  • Chen YJ, KIm IH, Cho JH, Yoo JS, Kim HJ, Shin SO. 2008b. Utilization of δ-aminolevulinic acid for livestock: blood characteristics and immune organ weight in broilers. J Anim Feed Sci. 17(2):215–223.
  • Donsbough AL, Powell S, Waguespack A, Bidner TD, Southern LL. 2010. Uric acid, urea, and ammonia concentrations in serum and uric acid concentration in excreta as indicators of amino acid utilization in diets for broilers. Poult Sci. 89(2):287–294.
  • Fujino M, Nishio Y, Ito H, Tanaka T, Li X. 2016. 5-Aminolevulinic acid regulates the inflammatory response and alloimmune reaction. Int Immunopharmacol. 37:71–78.
  • Gozzelino R, Jeney V, Soares MP. 2010. Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol. 50:323–354.
  • Harrison PM, Arosio P. 1996. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1275(3):161–203.
  • Hentze MW, Muckenthaler MU, Galy B, Camaschella C. 2010. Two to tango: regulation of Mammalian iron metabolism. Cell. 142(1):24–38.
  • Hossain MM, Park JW, Kim IH. 2016. δ-Aminolevulinic acid, and lactulose supplements in weaned piglets diet: effects on performance, fecal microbiota, and in-vitro noxious gas emissions. Livest Sci. 183:84–91.
  • Huang C, Fan Z, Han D, Johnston LJ, Ma X, Wang F. 2021. Pyrroloquinoline quinone regulates the redox status in vitro and in vivo of weaned pigs via the Nrf2/HO-1 pathway. J Anim Sci Biotech. 12(1):77.
  • Iranshahy M, Iranshahi M, Abtahi SR, Karimi G. 2018. The role of nuclear factor erythroid 2-related factor 2 in hepatoprotective activity of natural products: a review. Food Chem Toxicol. 120:261–276.
  • Ishfaq M, Chen C, Bao J, Zhang W, Wu Z, Wang J, Liu Y, Tian E, Hamid S, Li R, et al. 2019. Baicalin ameliorates oxidative stress and apoptosis by restoring mitochondrial dynamics in the spleen of chickens via the opposite modulation of NF-κB and Nrf2/HO-1 signaling pathway during mycoplasma gallisepticum infection. Poult Sci. 98(12):6296–6310.
  • Jang I, Ko Y, Moon Y, Sohn S. 2014. Effects of vitamin c or e on the pro-inflammatory cytokines, heat shock protein 70 and antioxidant status in broiler chicks under summer conditions. Asian Australas J Anim Sci. 27(5):749–756.
  • Ji SY, Cha HJ, Molagoda I, Kim MY, Kim SY, Hwangbo H, Lee H, Kim GY, Kim DH, Hyun JW, et al. 2021. Suppression of lipopolysaccharide-induced inflammatory and oxidative response by 5-aminolevulinic acid in RAW 264.7 macrophages and zebrafish larvae. Biomol Ther. 29(6):685–696.
  • Jiang XR, Zhang HJ, Wang J, Wu SG, Yue HY, Lü HY, Cui H, Bontempo V, Qi GH. 2016. Effect of dried tangerine peel extract supplementation on the growth performance and antioxidant status of broiler chicks. Ital J Anim Sci. 15(4):642–648.
  • Liu C, Fujino M, Zhu S, Isaka Y, Ito H, Takahashi K, Nakajima M, Tanaka T, Zhu P, Li XK. 2019. 5-ALA/SFC enhances HO-1 expression through the MAPK/Nrf2 antioxidant pathway and attenuates murine tubular epithelial cell apoptosis. Febs Open Bio. 9(11):1928–1938.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25(4):402–408.
  • Manikandan P, Nagini S. 2018. Cytochrome P450 structure, function and clinical significance: a review. Current Drug Targets. 19(1):38–54.
  • Mateo RD, Morrow JL, Dailey JW, Ji F, Kim SW. 2005. Use of delta-aminolevulinic acid in swine diet: effect on growth performance, behavioral characteristics and hematological/immune status in nursery pigs. Asian Australas J Anim Sci. 19(1):97–101.
  • Miao ZQ, Dong YY, Qin X, Yuan JM, Han MM, Zhang KK, Shi SR, Song XY, Zhang JZ, Li JH. 2021. Dietary supplementation of methionine mitigates oxidative stress in broilers under high stocking density. Poult Sci. 100(8):101231.
  • Nguyen T, Nioi P, Pickett CB. 2009. the Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 284(20):13291–13295.
  • Nishio Y, Fujino M, Zhao M, Ishii T, Ishizuka M, Ito H, Takahashi K, Abe F, Nakajima M, Tanaka T, et al. 2014. 5-Aminolevulinic acid combined with ferrous iron enhances the expression of heme oxygenase-1. Int Immunopharmacol. 19(2):300–307.
  • Ogura S-i, Maruyama K, Hagiya Y, Sugiyama Y, Tsuchiya K, Takahashi K, Abe F, Tabata K, Okura I, Nakajima M, et al. 2011. The effect of 5-aminolevulinic acid on cytochrome c oxidase activity in mouse liver. BMC Res Notes. 4(1):66.
  • Pedrosa-Gerasmio IR, Kondo H, Hirono I. 2019. Dietary 5-aminolevulinic acid enhances adenosine triphosphate production, ecdysis and immune response in pacific white shrimp, Litopenaeus vannamei (Boone). Aquac Res. 50(4):1131–1141.
  • Poljsak B, Šuput D, Milisav I. 2013. Achieving the balance between ros and antioxidants: when to use the synthetic antioxidants. Oxid Med Cell Longev. 2013:1–11.
  • Sato K, Matsushita K, Takahashi K, Aoki M, Fuziwara J, Miyanari S, Kamada T. 2012. Dietary supplementation with 5-aminolevulinic acid modulates growth performance and inflammatory responses in broiler chickens. Poult Sci. 91(7):1582–1589.
  • Short FJ, Gorton P, Wiseman J, Boorman KN. 1996. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. J Anim Feed Sci. 59(4):215–221.
  • Southern LL, Baker DH. 1982. Iron status of the chick as affected by eimeria acervulina infection and by variable iron ingestion. J Nutr. 112(12):2353–2362.
  • Sugiyama Y, Hiraiwa Y, Hagiya Y, Nakajima M, Tanaka T, Ogura S. 2018. 5-Aminolevulinic acid regulates the immune response in LPS-stimulated RAW 264.7 macrophages. BMC Immunol. 19(1):41.
  • Wang JP, Lee JH, Jang HD, Yan L, Cho JH, Kim IH. 2011b. Effects of δ-aminolevulinic acid and vitamin C supplementation on iron status, production performance, blood characteristics and egg quality of laying hens. J Anim Physiol Anim Nutr. 95(4):417–423.
  • Wang JP, Yan L, Lee JH, Zhou TX, Kim IH. 2011a. Effects of dietary delta-aminolevulinic acid and vitamin C on growth performance, immune organ weight and ferrum status in broiler chicks. Livest Sci. 135(2–3):148–152.
  • Waza AA, Hamid Z, Ali S, Bhat SA, Bhat MA. 2018. A review on heme oxygenase-1 induction: is it a necessary evil. Inflamm Res. 67(7):579–588.
  • Yan L, Kim IH. 2011. Evaluation of dietary supplementation of delta-aminolevulinic acid and chitooligosaccharide on growth performance, nutrient digestibility, blood characteristics, and fecal microbial shedding in weaned pigs. Anim Feed Sci Tech. 169(3–4):275–280.
  • Zhao M, Guo H, Chen J, Fujino M, Ito H, Takahashi K, Abe F, Nakajima M, Tanaka T, Wang J. 2015. 5-Aminolevulinic acid combined with sodium ferrous citrate ameliorates H2O2-induced cardiomyocyte hypertrophy via activation of the MAPK/Nrf2/HO-1 pathway. Am J Physiol-Cell Ph. 308(8):C665–C672.