116
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Computational fluid dynamics modeling of methane flame interaction with simulated rock rubble

, &

References

  • Andrews, G. , & Bradley, D. (1972). The burning velocity of methane-air mixtures. Combustion and Flame , 19(2), 275–288. https://doi.org/10.1016/S0010-2180(72)80218-9
  • ANSYS® Fluent v17.2 User Guide . (2016). Porous media conditions . ANSYS, Inc.
  • Barnett, H. , & Hibbard, R. (1957). Basic considerations in the combustion of Hydrocarbon fuels with air (NACA Report 1300).
  • Brune, J. (2014). The methane-air explosion hazard within coal mine gobs. ME Online Exclusive. Retrieved May 2015, from Mining Engineering Magazine.
  • Chapman, W. , & Wheeler, R. (1926). The propagation of flame in mixtures of methane and air. Part IV the effect of restrictions in the path of the flame. Journal of Chemical Society , 129, 2139–2147. https://doi.org/10.1039/JR9262902139
  • Ciccarelli, G. , Hlouschko, S. , Johansen, C. , Karnesky, J. , & Shepherd, J. (2009). The study of geometric effects on the explosion front propagation in a horizontal channel with a layer of spherical beads. Proceedings of the Combustion Institute , 32(2), 2299–2306. https://doi.org/10.1016/j.proci.2008.06.107
  • Dryer, F. , & Glassman, I. (1973). High-temperature oxidation of CO and CH4. International Symposium on Combustion , 14(1), 987–1003. https://doi.org/10.1016/S0082-0784(73)80090-6
  • Fig, M. , Bogin, J. G. , Brune, J. , & Grubb, J. (2016). Experimental and numerical investigation of methane ignition and flame propagation in cylindrical tubes ranging from 5 to 71cm - part I: Effects of scaling from laboratory to large-scale field studies. Journal of Loss Prevention in the Process Industries , 41, 241–251. https://doi.org/10.1016/j.jlp.2016.03.018
  • Fig, M. , Strebinger, C. , Bogin, J. G. , & Brune, J. (2018). Numerical and experimental investigation of the impact of gob location on methane flame front propagation velocity and pressure rise in cylindrical vessels. SME Annual Conference and Exhibit . Minneapolis, MN.  ISSN: 0950-4230.
  • Friedman, R. (1949). The quenching of laminar oxyhydrogen flames by solid surfaces. Third Symposium on Combustion and Flame and Explosion Phenomena , 110. https://doi.org/10.1016/S1062-2896(49)80014-6
  • Gilmore, R. , Brune, J. , Lolon, S. , Juganda, A. , Saki, S. , Bogin, G. , & Grubb, J. (2016). Explosive gas zone formation in underground coal longwall bleeder ventilated gobs with a adjacent panel using CFD modeling. Society of Mining, Metallurgy, and Exploration Symposium: Annual Meeting and Exhibition .
  • Ibrahim, S. , & Masri, A. (2001). The effects of obstructions on overpressure resulting from premixed flame deflagration. Journal of Loss Prevention in the Process Industries , 14(3), 213–221. https://doi.org/10.1016/S0950-4230(00)00024-3
  • Juganda, A. , Brune, J. , Bogin, J. G. , Grubb, J. , & Lolon, S. (2017). CFD modeling of longwall tailgate ventilation conditions. 16th North American Mine Ventilation Symposium . Golden, CO.
  • Karacan, C. O. , Ruiz, F. A. , Cote, M. , & Phipps, S. (2011). Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. International Journal of Coal Geology , 86(2–3), 121–156. https://doi.org/10.1016/j.coal.2011.02.009
  • Lolon, S. , Brune, J. , Bogin, J. G. , Grubb, J. , & Juganda, A. (2017). Understanding gob outgassing associated with pressure disturbances in longwall mine. 16th North American Mine Ventilation Symposium . Golden, CO.
  • Marts, J.A. , Gilmore, R.J. , Brune, J.F. , Bogin Jr., G.E. , Grubb, J.W. , Saki, S.A . (2014). Dynamic Gob Response and Reservoir Properties for Active Longwall Coal Mines. Transactions of the Society for Mining, Metallurgy and Exploration 2014, Society for Mining, Metallurgy and Exploration Inc ., Englewood, CO, Vol. 336, pp. 129–136.
  • Masri, A. , Ibrahim, S. , Nehzat, N. , & Green, A. (2000). Experimental study of premixed flame propagation over various solid obstructions. Experimental Thermal and Fluid Science , 21(1–3), 109–116. https://doi.org/10.1016/S0894-1777(99)00060-6
  • McKinney, R. , Crocco, W. , Tortorea, J. , Wirth, G. , Weaver, C. , Urosek, J. , & Stephan, C . (2001). Report of investigation, underground coal mine explosions, July 31-August 1, 2000, willow creek mine (ID No 42-02113). U.S. Department of Labor, MSHA.
  • Moen, I. , Lee, J. , Hjertager, B. , Fuhre, K. , & Eckhoff, R. (1982). Pressure development due to turbulent flame propagation in large-scale methane-air explosions. Combustion and Flame , 47, 31–52. https://doi.org/10.1016/0010-2180(82)90087-6
  • Page, N. , Caudill, S. , Godsey, J. , Moore, A. , Phillipson, S. , Steffey, D. , & Brown, A . (2011). Report of investigation fatal underground mine explosion, April 5, 2010, upper big branch mine-South, performance coal company (ID No. 46-08436). U.S. Department of Labor, MSHA.
  • Ren, T. , & Edwards, J. (2000). Three-dimensional computational fluid dynamics modelling of methane flow through permeable strata around a longwall face. Mining Technology , 109(1), 41–48. https://doi.org/10.1179/mnt.2000.109.1.41
  • Riley, N. A. (1941). Projection sphericity. Journal of Sedimentary Research , 11(2), 94–95. https://doi.org/10.1306/D426910C-2B26-11D7-8648000102C1865D
  • Strebinger, C. , Fig, M. , Blakketter, K. , Walz, L. , Bogin, J. G. , Brune, J. , & Grubb, J. (2017). A fundamental investigation of simulated gob configurations on methane flame propagation. 16th North American Mine Ventilation Symposium .
  • Strebinger, C. , Fig, M. , Pardonner, D. , Treffner, B. , Bogin, G. , & Brune, J. (2018). Investigation on the overpressure produced by high-speed methane gas deflagrations in confined spaces. Society of Mining, Metallurgy, and Exploration Annual Conference & Expo .
  • Tanguturi, K. , Balusu, R. , & Bongani, D. (2017). Goaf gas flow modelling in 6km long longwall panel. Podzemni Radovi, 31, 1–15. https://doi.org/10.5937/podrad1731001T
  • Turns, S. (2012). An introduction to combustion: Concepts and applications (3rd ed.). McGraw Hill.
  • Whitaker, S. (1986). Flow in porous media I: A theoretical derivation of Darcy’s law. Transport in Porous Media , 1(1), 3–25. https://doi.org/10.1007/BF01036523
  • Williams, F. (1985). Combustion theory (2 ed.). Addison-Wesley.
  • Worrall, D. , Wachel, E. , Ozbay, U. , Munoz, D. , & Grubb, J. (2012). Computational fluid dynamic modeling of sealed longwall gob in underground coal mine. 14th North American Mine Ventilation Symposium , (pp. 135–145). Salt Lake City, Utah.
  • Yuan, L. , Smith, A. C. , & Brune, J. F. (2000). Computational fluid dynamics study on the ventilation flow paths in longwall gobs . National Institute for Occupational Safety and Health.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.