15
Views
0
CrossRef citations to date
0
Altmetric
METALLURGY AND MATERIALS

Effect of forming parameters on the corrosion performance of retrogression- and warm-formed AA7075 alloy sheets

&
Received 21 Dec 2023, Accepted 30 Apr 2024, Published online: 17 Jul 2024

REFERENCES

  • Alexander, C. L., Tribollet, B., & Orazem, M. E. (2016). Influence of micrometric-scale electrode heterogeneity on electrochemical impedance spectroscopy. Electrochimica Acta, 201, 374–379. https://doi.org/10.1016/j.electacta.2016.02.133
  • The Aluminum Association. (2015). Registration record series teal sheets: International alloy designations and chemical composition limits for wrought aluminum and wrought aluminum alloys.
  • ASTM International. (2020). ASTM G59-97(2020): Standard test method for conducting potentiodynamic polarization resistance measurements. https://doi.org/10.1520/G0059-97R20
  • Balderach, D. C., Hamilton, J. A., Leung, E., Tejeda, M. C., Qiao, J., & Taleff, E. M. (2003). The paint–bake response of three Al–Mg–Zn alloys. Materials Science and Engineering: A, 339(1–2), 194–204. https://doi.org/10.1016/S0921-5093(02)00158-2
  • Barlat, F., Gracio, J. J., Lee, M. G., Rauch, E. F., & Vincze, G. (2011). An alternative to kinematic hardening in classical plasticity. International Journal of Plasticity, 27(9), 1309–1327. https://doi.org/10.1016/j.ijplas.2011.03.003
  • Basak, S., & Panda, S. K. (2019). Necking and fracture limit analyses of different pre-strained sheet materials in polar effective plastic strain locus using Yld2000-2d yield model. Journal of Materials Processing Technology, 267, 289–307. https://doi.org/10.1016/j.jmatprotec.2018.10.004
  • Basak, S., & Panda, S. K. (2023). Use of uncoupled ductile damage models for fracture forming limit prediction during two-stage forming of aluminum sheet material. Journal of Manufacturing Processes, 97, 185–199. https://doi.org/10.1016/j.jmapro.2023.04.042
  • Bertolini, R., Simonetto, E., Pezzato, L., Fabrizi, A., Ghiotti, A., & Bruschi, S. (2021). Mechanical and corrosion resistance properties of AA7075-T6 sub-zero formed sheets. The International Journal of Advanced Manufacturing Technology, 115(9–10), 2801–2824. https://doi.org/10.1007/s00170-021-07333-7
  • Bong, H. J., Barlat, F., Ahn, D. C., Kim, H. Y., & Lee, M. G. (2013). Formability of austenitic and ferritic stainless steels at warm forming temperature. International Journal of Mechanical Sciences, 75, 94–109. https://doi.org/10.1016/j.ijmecsci.2013.05.017
  • Ceretti, E., Contri, C., & Giardini, C. (2006). Tube-hydroforming experiments on an Al 7003 extruded tube. Journal of Materials Processing Technology, 177(1–3), 672–675. https://doi.org/10.1016/j.jmatprotec.2006.04.098
  • Choi, Y., Lee, J., Panicker, S. S., Jin, H. K., Panda, S. K., & Lee, M. G. (2020). Mechanical properties, springback, and formability of W-temper and peak aged 7075 aluminum alloy sheets: Experiments and modeling. International Journal of Mechanical Sciences, 170, 105344. https://doi.org/10.1016/j.ijmecsci.2019.105344
  • Cho, E., Kwon, H., & Macdonald, D. D. (2002). Photoelectrochemical analysis on the passive film formed on Fe-20Cr in pH 8.5 buffer solution. Electrochimica Acta, 47(10), 1661–1668. https://doi.org/10.1016/S0013-4686(01)00887-8
  • Cina, B. (1974). Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking ( US patent 3856584). Israel Aircraft Industries Ltd.
  • Cottrell, A. H. (1953). LXXXVI. A note on the Portevin-Le Chatelier effect. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 44(355), 829–832. https://doi.org/10.1080/14786440808520347
  • Danh, N. C., Rajan, K., & Wallace, W. (1983). TEM study of microstructural changes during retrogression and reaging in 7075 aluminum. Metallurgical Transactions A, Physical Metallurgy and Materials Science, 14(9), 1843–1850. https://doi.org/10.1007/BF02645554
  • Davis, J. R. (ed.). (1993). ASM specialty handbook: Aluminum and aluminum alloys, and Davis, J. R.(Ed.), ASM international, materials park (pp. 72–73). https://materialsdata.nist.gov/bitstream/handle/11115/173/Aluminum%20and%20Aluminum%20Alloys%20Davis.pdf
  • De Wit, J. H. W., & Lenderink, H. J. W. (1996). Electrochemical impedance spectroscopy as a tool to obtain mechanistic information on the passive behaviour of aluminum. Electrochimica Acta, 41(7/8), 1111–1119. https://doi.org/10.1016/0013-4686(95)00462-9
  • Dicecco, S., DiCiano, M., Butcher, C., & Worswick, M. (2018). Limit strain characterization in an aluminum die-quenching process. IOP Conference Series: Materials Science & Engineering, 418, 012035. https://doi.org/10.1088/1757-899X/418/1/012035
  • Fang, H. C., Chen, K. H., Chen, X., Chao, H., & Peng, G. S. (2009). Effect of Cr, Yb and Zr additions on localized corrosion of Al-Zn-Mg-Cu alloy. Corrosion Science, 51(12), 2872–2877. https://doi.org/10.1016/j.corsci.2009.08.001
  • Garrett, R. P., Lin, J., & Dean, T. A. (2005). Solution heat treatment and cold die quenching in forming AA 6xxx sheet components: Feasibility study. Advanced Materials Research, 6–8, 673–680. https://doi.org/10.4028/www.scientific.net/AMR.6-8.673
  • Goossens, A., Vazquez, M., & Macdonald, D. D. (1996). The nature of electronic states in anodic zirconium oxide films part 1: The potential distribution. Electrochimica Acta, 41(1), 35–45. https://doi.org/10.1016/0013-4686(95)00285-M
  • Hakiki, N. E., Boudin, S., Rondot, B., & Da Cunha Belo, M. (1995). The electronic structure of passive films formed on stainless steels. Corrosion Science, 37(11), 1809–1822. https://doi.org/10.1016/0010-938X(95)00084-W
  • Hakiki, N. E., Da Cunha Belo, M., Simoẽs, A. M. P., & Ferreira, M. G. S. (1998). Semiconducting properties of passive films formed on stainless steels: Influence of the alloying elements. Journal of the Electrochemical Society, 145(11), 3821–3829. https://doi.org/10.1149/1.1838880
  • Hakiki, N. E., Montemor, M. F., Ferreira, M. G. S., & da Cunha Belo, M. (2000). Semiconducting properties of thermally grown oxide films on AISI 304 stainless steel. Corrosion Science, 42(4), 687–702. https://doi.org/10.1016/S0010-938X(99)00082-7
  • Harrison, N. R., & Luckey, S. G. (2014). Hot stamping of a B-pillar outer from high strength aluminum sheet AA7075. SAE International Journal of Materials and Manufacturing, 7(3), 567–573. https://doi.org/10.4271/2014-01-0981
  • Hitzig, J., Jüttner, K., Lorenz, W. J., & Paatsch, W. (1986). AC-impedance measurements on corroded porous aluminum oxide films. Journal of the Electrochemical Society, 133(5), 887–892. https://doi.org/10.1149/1.2108756
  • Hitzig, J., Jüttner, K., Lorenz, W. J., & Paatsch, W. (1984). AC-impedance measurements on porous aluminium oxide films. Corrosion Science, 24(11–12), 945–952. https://doi.org/10.1016/0010-938X(84)90115-X
  • Huang, Y., Shih, H., Daugherty, J., & Mansfeld, F. (2009). Evaluation of the properties of anodized aluminum 6061 subjected to thermal cycling treatment using electrochemical impedance spectroscopy (EIS). Corrosion Science, 51(10), 2493–2501. https://doi.org/10.1016/j.corsci.2009.06.031
  • Huang, Y., Shih, H., Huang, H., Daugherty, J., Wu, S., Ramanathan, S., Chang, C., & Mansfeld, F. (2008). Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS). Corrosion Science, 50(12), 3569–3575. https://doi.org/10.1016/j.corsci.2008.09.008
  • Huang, V. M.-W., Vivier, V., Orazem, M. E., Pébère, N., & Tribollet, B. (2007). The apparent constant-phase-element behavior of a disk electrode with faradaic reactions. Journal of the Electrochemical Society, 154(2), C99–C107. https://doi.org/10.1149/1.2398894
  • Instrument, BioLogic Science. (2011, February). EC-Lab software: Techniques and applications. BioLogic, 10(37). https://www.egr.msu.edu/~scb-group-web/blog/wp-content/uploads/2012/07/EC-Lab-software-Techniques-and-Applications-manual.pdf
  • Ivanoff, T. A., Carter, J. T., Hector, L. G., & Taleff, E. M. (2019). Retrogression and reaging applied to warm forming of high-strength aluminum alloy AA7075-T6 heet. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 50(3), 1545–1561. https://doi.org/10.1007/s11661-018-5084-3
  • Kanno, M., Araki, I., & Cui, Q. (1994, July). Precipitation behaviour of 7000 alloys during retrogression and reaging treat. Materials Science and Technology, 10, 599–603. https://doi.org/10.1179/mst.1994.10.7.599
  • Kelly, J. C., Sullivan, J. L., Burnham, A., & Elgowainy, A. (2015). Impacts of vehicle weight reduction via material substitution on life-cycle greenhouse gas emissions. Environmental Science and Technology, 49(20), 12535–12542. https://doi.org/10.1021/acs.est.5b03192
  • King, J. E., You, C. P., & Knott, J. F. (1981). Serrated yielding and the localized shear failure mode in aluminium alloys. Acta Metallurgica, 29(9), 1553–1566. https://doi.org/10.1016/0001-6160(81)90037-7
  • Knight, S. P., Birbilis, N., Muddle, B. C., Trueman, A. R., & Lynch, S. P. (2010). Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys. Corrosion Science, 52(12), 4073–4080. https://doi.org/10.1016/j.corsci.2010.08.024
  • Krawiec, H., Vignal, V., Amar, H., & Peyre, P. (2011). Local electrochemical impedance spectroscopy study of the influence of ageing in air and laser shock processing on the micro-electrochemical behaviour of AA2050-T8 aluminium alloy. Electrochimica Acta, 56(26), 9581–9587. https://doi.org/10.1016/j.electacta.2011.01.091
  • Krishnan, C., & Kish, J. R. (2014). Exfoliation corrosion of artificially aged AA7003 extrusions. Canadian Metallurgical Quarterly, 53(4), 455–459. https://doi.org/10.1179/1879139514Y.0000000143
  • Lee, J., Bong, H. J., Ha, J., Choi, J., Barlat, F., & Lee, M. G. (2018a). Influence of yield stress determination in anisotropic hardening model on springback prediction in dual-phase steel. JOM, 70(8), 1560–1566. https://doi.org/10.1007/s11837-018-2910-4
  • Lee, J., Bong, H. J., Kim, D., Lee, Y. S., Choi, Y., & Lee, M. G. (2019). Application of combined W-temper and cold forming technology to high-strength aluminum alloy automotive parts. JOM, 71(12), 4393–4404. https://doi.org/10.1007/s11837-019-03779-z
  • Lee, J., Bong, H. J., Kim, D., Lee, Y. S., Choi, Y., & Lee, M. G. (2020). Mechanical properties and formability of heat-treated 7000-series high-strength aluminum alloy: Experiments and finite element modeling. Metals and Materials International, 26(5), 682–694. https://doi.org/10.1007/s12540-019-00353-9
  • Lee, J., Kim, D., Lee, Y. S., Bong, H. J., Barlat, F., & Lee, M. G. (2015). Stress update algorithm for enhanced homogeneous anisotropic hardening model. Computer Methods in Applied Mechanics and Engineering, 286, 63–86. https://doi.org/10.1016/j.cma.2014.12.016
  • Lee, J., Kim, S. J., Lee, Y. S., Lee, J. Y., Kim, D., & Lee, M. G. (2017). Distortional hardening concept for modeling anisotropic/asymmetric plastic behavior of AZ31B magnesium alloy sheets. International Journal of Plasticity, 94, 74–97. https://doi.org/10.1016/j.ijplas.2017.02.002
  • Lee, Y. S., Koh, D. H., Kim, H. W., & Ahn, Y. S. (2018b). Improved bake-hardening response of Al-Zn-Mg-Cu alloy through pre-aging treatment. Scripta Materialia, 147(April), 45–49. https://doi.org/10.1016/j.scriptamat.2017.12.030
  • Lee, J. W., Lee, M. G., & Barlat, F. (2012). Finite element modeling using homogeneous anisotropic hardening and application to spring-back prediction. International Journal of Plasticity, 29(1), 13–41. https://doi.org/10.1016/j.ijplas.2011.07.007
  • Macdonald, D. D. (1992). The point defect model for the passive state. Journal of the Electrochemical Society, 139(12), 3434. https://doi.org/10.1149/1.2069096
  • Macdonald, D. D. (1999). Passivity–the key to our metals-based civilization. Pure and Applied Chemistry, 71(6), 951–978. https://doi.org/10.1351/pac199971060951
  • Macdonald, D. D. (2006). On the existence of our metals-based civilization. Journal of the Electrochemical Society, 153(7), B213. https://doi.org/10.1149/1.2195877
  • Mahmoud, H. (2019). Corrosion performance of carbon steel in N-doped mesoporous carbon spheres (NMCS)-containing alkaline medium in presence of chloride. Materials Today Communications, 21, 100677. https://doi.org/10.1016/j.mtcomm.2019.100677
  • Marciniak, Z., Duncan, J. L., & Hu, S. J. (2002). Mechanics of sheet metal forming (2nd ed.). Butterworth-Heinemann.
  • Meng, Q., & Frankel, G. S. (2004). Effect of Cu content on corrosion behavior of 7xxx series aluminum alloys. Journal of the Electrochemical Society, 151(5), B271. https://doi.org/10.1149/1.1695385
  • Mott, N. (1939). No title. Royal Society London, 171(Series A), 27.
  • National Research Council of the National Academies. (2011). Assessment of fuel economy technologies for light-duty vehicles. National Academies Press.
  • Nozik, A. J. (1978). Photoelectrochemistry: Applications to solar energy conversion. Annual Review of Physical Chemistry, 29(1), 189–222. https://doi.org/10.1146/annurev.pc.29.100178.001201
  • Ogunsanya, I. G. (2023a, October). Corrosion and hardness properties of retrogression-formed and warm-formed AA7075 sheet. Engineering Reports, e12803. https://doi.org/10.1002/eng2.12803
  • Ogunsanya, I. G. (2023b). Stress corrosion cracking of precipitation-hardened AA7075-T6 alloy sheet. Proceedings of the 62nd Conference of Metallurgists, COM 2023 (pp. 23–30). Springer, Cham. Toronto, ON, Canada. https://doi.org/10.1007/978-3-031-38141-6_53
  • Omer, K., Abolhasani, A., Kim, S., Nikdejad, T., Butcher, C., Wells, M., Esmaeili, S., & Worswick, M. (2018, July). Process parameters for hot stamping of AA7075 and D-7xxx to achieve high performance aged products. Journal of Materials Processing Technology, 257, 170–179. https://doi.org/10.1016/j.jmatprotec.2018.02.039
  • Omer, K., Butcher, C., & Worswick, M. (2020). Characterization and application of a constitutive model for two 7000-series aluminum alloys subjected to hot forming. International Journal of Mechanical Sciences, 165, 105218. https://doi.org/10.1016/j.ijmecsci.2019.105218
  • Park, J. K. (1988). Influence of retrogression and reaging treatments on the strength and stress corrosion resistance of aluminium alloy 7075-T6. Materials Science and Engineering, 103(2), 223–231. https://doi.org/10.1016/0025-5416(88)90512-5
  • Park, J. K., & Ardell, A. J. (1984). Effect of retrogression and reaging treatments on the microstructure of Al-7075-T651. Metallurgical Transactions A, 15(8), 1531–1543. https://doi.org/10.1007/BF02657792
  • Pishyar, H. (2021). Constitutive behaviour and formability of pre-aged AA7075 sheet in a warm forming process [ MASc thesis]. Mechanical and Mechatronics Engineering, University of Waterloo. 1–156.
  • Rajan, K., Wallace, W., & Beddoes, J. C. (1982). Microstructural study of a high-strength stress-corrosion resistant 7075 aluminium alloy. Journal of Materials Science, 17(10), 2817–2824. https://doi.org/10.1007/BF00644656
  • Schottky, W. (1938). Zur Halbleitertheorie der Sperrschicht- und Spitzengleichrichter. Natural Science, 26(843), 1432–1904. https://doi.org/10.1007/BF01774216
  • Sikora, E., & Macdonald, D. D. (2002). Nature of the passive film on nickel. Electrochimica Acta, 48(1), 69–77. https://doi.org/10.1016/S0013-4686(02)00552-2
  • Sikora, J., Sikora, E., & MacDonald, D. D. (2000). The electronic structure of the passive film on tungsten. Electrochimica Acta, 45(12), 1875–1883. https://doi.org/10.1016/S0013-4686(99)00407-7
  • Torbati-Sarraf, H., Torbati-Sarraf, S. A., Chawla, N., & Poursaee, A. (2020). A comparative study of corrosion behavior of an additively manufactured Al-6061 RAM2 with extruded Al-6061 T6. Corrosion Science, 174(June), 108838. https://doi.org/10.1016/j.corsci.2020.108838
  • Viana, F., Pinto, A. M. P., Santos, H. M. C., & Lopes, A. B. (1999). Retrogression and re-ageing of 7075 aluminium alloy: Microstructural characterization. Journal of Materials Processing Technology, 92–93, 54–59. https://doi.org/10.1016/S0924-0136(99)00219-8
  • Wang, H., Luo, Y. B., Friedman, P., Chen, M. H., & Gao, L. (2012). Warm forming behavior of high strength aluminum alloy AA7075. Transactions of Nonferrous Metals Society of China (English Edition), 22(1), 1–7. https://doi.org/10.1016/S1003-6326(11)61131-X
  • Zhang, Y., Milkereit, B., Kessler, O., Schick, C., & Rometsch, P. A. (2014). Development of continuous cooling precipitation diagrams for aluminium alloys AA7150 and AA7020. Journal of Alloys and Compounds, 584, 581–589. https://doi.org/10.1016/j.jallcom.2013.09.014
  • Zhang, Y., Weyland, M., Milkereit, B., Reich, M., & Rometsch, P. A. (2016). Precipitation of a new platelet phase during the quenching of an Al-Zn-Mg-Cu alloy. Scientific Reports, 6(1), 1–9. https://doi.org/10.1038/srep23109
  • Zhu, Y., Sun, K., & Frankel, G. S. (2018). Intermetallic phases in aluminum alloys and their roles in localized corrosion. Journal of the Electrochemical Society, 165(11), C807–C820. https://doi.org/10.1149/2.0931811jes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.