85
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Traits associated with pod yield, seed Fe, and Zn contents in Okra landraces: a path analysis

References

  • Adekoya, M.A., O.J. Ariyo, O.B. Kehinde, and A.E. Adegbite. 2014. Correlation and path analysis of seed yield in Okra (Abelmoschus esculentus). Pertanika J. Trop. Agric. Sci. 37(1):39–49.
  • Adelakun, O.E., B.I.O. Omowaye, L.A. Adeyemi, and M. Van de Venter. 2012. Mineral composition and functional attributes of Nigerian okra seed flour. Food Res. Int. 47:348–352.
  • Ademoyegun, O.T., P.E. Akin-Idowu, D.O. Ibitoye, and G.O. Adewuyi. 2013. Phenolic contents and free radical scavenging activity in some leafy vegetables. Int. J. Veg. Sci. 19:126–137. doi: 10.1080/19315260.2012.677943.
  • Adetuyi, F., and A. Osagie. 2011. Nutrients, antinutrients, minerals and zinc bioavailability of okra (Abelmoschus esculentus) variety. Am. J. Food Nutr. 1(2):49–54. doi: 10.5251/ajfn.2011.1.2.49.54.
  • Ajiboye, G.A., J.O. Olaniyan, C. Bosiako, and O.O. Oyetunde. 2014. Assessment of land use pattern and land form on selected physic-chemical properties of soils developed on basement complex-sedimentary transitional zone of South Western Nigeria. Niger. J. Soil Sci. 24(1):11–23.
  • Alake, C.O. 2019. Genetic variability and diversity in okra landraces using agromorphological traits and seed elemental mineral. Int. J. Veg. Sci. in press. 1–23. doi: 10.1080/19315260.2019.1610926.
  • Alake, C.O., and O.J. Ariyo. 2012. Classification of genetic diversity and choice of parents for hybridization in West African Okra. Trop. Agric. (Trinidad) 89(1):32–40.
  • Alake, C.O., O.J. Ariyo, and O.A. Oduwaye. 2013. Contribution pod characters to pod yield in West African Okra under pluvial and fluxial agro-ecosystems. Int. J. Veg. Sci. 19:352–373. doi: 10.1080/19315260.2012.736017.
  • Alake, C.O., M.A. Ayo-Vaughan, and S.I. Adetiloye. 2010. Evaluation of selection criteria in Abelmoschus caillei using correlation coefficients and path analysis. Moor J. Agric. Res. 10:88–100.
  • Ariyo, O.J., and A. Odulaja. 1991. Numerical analysis of variation among accessions of okra [Abelmoschus esculentus (L.) Moench], Malvaceae. Ann. Bot. 67:527–531. doi: 10.1093/oxfordjournals.aob.a088194.
  • Bhatt, G.M. 1973. Significance of path coefficient analysis in determining the nature of character association. Euphytica 22:338–343. doi: 10.1007/BF00022643.
  • Calisir, S., M. Ozcan, H. Haciseferogullari, and M.U. Yildiz. 2005. A study on some physic-chemical properties of Turkey Okra seeds. J. Food Eng. 68(1):73–78. doi: 10.1016/j.jfoodeng.2004.05.023.
  • Dash, G.B. 1997. Multivariate analysis in okra [Abelmoschus esculentus (L.) Moench.]. Environ. Ecol. 15:332–334.
  • Dewey, D.R., and K.H. Lu. 1959. A correlation and path coefficient analysis of component of crested wheatgrass seed production. Agron. J. 51:515–518. doi: 10.2134/agronj1959.00021962005100090002x.
  • Ekwumemgbo, P.A., M.S. Sallau, K.I. Omoniyi, and S.Y. Zubairu. 2014. Proximate and anti-nutritional constituents of Abelmoschus esculentus grown in Fadaman Kubanni, Zaria, Kaduna State, Nigeria. J. Sci. Res. Rep. 3:2015–2027. doi: 10.9734/JSRR/2014/9031.
  • Gemede, H.F., and N. Ratta. 2014. Antinutritional factors in plant foods: Potential health benefits and adverse effects. Int. J. Nutr. Food Sci. 3:284–289. doi: 10.11648/j.ijnfs.20140304.18.
  • Isaac, R.R., and W.C. Johnson. 1975. Collaborative study of wet and dry ashing for elemental analysis of plant tissue by atomic absorption spectrophotometer. J. Assoc. Off. Anal. Chem. 58:436–440.
  • Kwon, S.H., and J.H. Torrie. 1964. Heritability and inter-relationship of traits of two soybean populations. Crop Sci. 4(1):196–198. doi: 10.2135/cropsci1964.0011183X000400020023x.
  • Molfetta, I., L. Ceccarini, M. Macchia, G. Flamini, and P.L. Cioni. 2013. Abelmoschus esculentus (L.) Moench and Abelmoschus moschatus Medik: Seeds production and analysis of the volatile compounds. Food Chem. 141:34–40. doi: 10.1016/j.foodchem.2013.02.030.
  • Montgomery, D.C. 2006. Introduction to linear regression analysis. John Wiley Sons, New York, NY.
  • Olayiwola, M.A., and O.J. Ariyo. 2015. Inter-character relationships of okra traits as affected by environment. Int. J. Veg. Sci. 21(3):249–263. doi: 10.1080/19315260.2013.873105.
  • Oyelade, O.J., B.I.O. Ade-Omowaye, and V.F. Adeomi. 2003. Influence of variety on protein, fat contents and some physical characteristics of okra seeds. J. Food Eng. 57:111–114. doi: 10.1016/S0260-8774(02)00279-0.
  • Petropoulos, S., A. Fermandez, L. Barros, and I.C.F.R. Ferreira. 2018. Chemical composition, nutritional value and antioxidant properties of Mediterranean okra genotypes in relation to harvest stage. Food Chem. 242:466–474. doi: 10.1016/j.foodchem.2017.09.082.
  • Rambabu, B., D.P. Waskar, and V.S. Khandare. 2019. Correlation and path coefficient analysis of fruit yield and yield attributes in okra (Abelmoschus esculentus). Int. J. Curr. Microbiol. Appl. Sci. 8(4):764–774. doi: 10.20546/ijcmas.2019.804.084.
  • Rao, P.U. 1985. Chemical composition and biological evaluation of okra seeds and their kernels. Qual. Plant Food Hum. Nutr. 35:389–396. doi: 10.1007/BF01091784.
  • Reddy, M.T., K. Hribabu, M. Ganesh, K.C. Reddy, H. Begum, R.S.K. Reddy, and J.D. Badu. 2012. Genetic variability analysis for the selection of the elite genotypes based on pod yield and quality from the germplasm of okra. J. Agric. Technol. 8(2):639–655.
  • Snedecor, G.W., and W.G. Cochran. 1980. Statistical methods. Iowa State University, Ames.
  • Tchientche Kamga, R., C. Kouamé, A.R. Atangana, T. Chagomoka, and R. Ndango. 2013. Nutritional evaluation of five African indigenous vegetables. J. Hortic. Res. 21:99–106. doi: 10.2478/johr-2013-0014.
  • Welch, M.R., and D.R. Graham. 2002. Breeding crops for enhanced micronutrient content. Plant Soil 245:205–214. doi: 10.1023/A:1020668100330.
  • Welch, M.R., and D.R. Graham. 2004. Breeding for micronutrients in staple food crops from a human perspective. J. Exp. Bot. 55:353–364. doi: 10.1093/jxb/erh064.
  • White, P.J., and M.R. Broadley. 2009. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, Ca, magnesium, selenium and iodine. New Phytol. 182:49–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.