39
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Carbohydrate enzymes related to cold-induced sweetening and tuber storage in potato genotypes

, , &

References

  • Abbasi, K.S., T. Masud, A. Qayyum, S.U. Khan, S. Abbas, and M.A. Jenks. 2016. Storage stability of potato variety Lady Rosetta under comparative temperature regimes. Sains. Malays. 45:677–688.
  • Aggarwal, N., P.K. Dhillon, and V.K. Zhawar. 2021. Cold-induced sweetening in tuber ends of potato (Solanum tuberosum L.) genotypes. Potato. J 48(1):67–75. https://epubs.icar.org.in/index.php/PotatoJ/article/view/116107.
  • Bajji, M., M. M’Hamdi, F. Gastiny, J. Rojas-Beltran, and P. du Jardin. 2007. Catalase inhibition accelerates dormancy release and sprouting in potato (Solanum tuberosum L.) tubers. Biotechnol. Agron. Soc. Environ 11:121–131.
  • Bandana, V.S., S.K. Kaushik, B. Singh, and P. Raigond. 2016. Variation in biochemical parameters in different parts of potato tubers for processing purposes. J. Food Sci. Technol 53:2040–2046. doi: 10.1007/s13197-016-2173-4.
  • Baroja-Fernández, E., F.J. Muñoz, T. Saikusa, M. Rodríguez-López, T. Akazawa, and J. Pozueta-Romero. 2003. Sucrose synthase catalyzes the de novo production of ADP glucose linked to starch biosynthesis in heterotrophic tissues of plants. Plant Cell Physiol. 44(5):500–509. doi: 10.1093/pcp/pcg062.
  • Barrera-Gavira, J.M., S.D.A. Pont, J.A. Morris, P.E. Hedley, D. Stewart, M.A. Taylor, and R.D. Hancock. 2021. Senescent sweetening in potato (Solanum tuberosum) tubers is associated with a reduction in plastidial glucose-6-phosphate/phosphate translocator transcripts. Postharvest Biol. Technol. 181:111637. doi: 10.1016/j.postharvbio.2021.111637.
  • Bhaskar, P.B., L. Wu, J.S. Busse, B.R. Whitty, A.J. Hamernik, S.H. Jansky, C.R. Buell, P.C. Bethke, and J. Jiang. 2010. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiol. 154(2):939–948. doi: 10.1104/pp.110.162545.
  • Busse, J.S., A.E. Wiberley-Bradford, and P.C. Bethke. 2019. Transient heat stress during tuber development alters post-harvest carbohydrate composition and decreases processing quality of chipping potatoes. J. Sci. Food Agric. 99(5):2579–2588. doi: 10.1002/jsfa.9473.
  • Campbell, M., J. Suttle, D.S. Douches, and C.R. Buell. 2014. Treatment of potato tubers with the synthetic cytokinin 1-(α-ethylbenzyl)-3-nitroguanidine results in rapid termination of endodormancy and induction of transcripts associated with cell proliferation and growth. Funct. Integr. Genomics 14(4):789–799. doi: 10.1007/s10142-014-0404-1.
  • Chen, S., M.R. Hajirezaei, M.I. Zanor, C. Hornyik, S. Debast, C. Lacomme, A.R. Fernie, U. Sonnewald, and F. Börnke. 2008. RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers (Solanum tuberosum) strongly affects the hexose-to-sucrose ratio upon cold storage with only minor effects on total soluble carbohydrate accumulation. Plant Cell Environ. 31(1):165–176. doi: 10.1111/j.1365-3040.2007.01747.x.
  • Decker, D., and L.A. Kleczkowski. 2019. UDP-sugar producing pyrophosphorylases: Distinct and essential enzymes with overlapping substrate specificities, providing de novo precursors for glycosylation reactions. Front. Plant Sci. 9:1822. doi: 10.3389/fpls.2018.01822.
  • Delaplace, P., M.L. Fauconnier, K. Sergeant, J.F. Dierick, M. Oufir, F. van der Wal, A.H. America, J. Renaut, J.F. Hausman, and P. du Jardin. 2009. Potato (Solanum tuberosum L.) tuber ageing induces changes in the proteome and antioxidants associated with the sprouting pattern. J. Exp. Bot. 60(4):1273–1288. doi: 10.1093/jxb/erp008.
  • Dhillon, P.K., N. Aggarwal, and V.K. Zhawar. 2022. Antioxidant activity of tuber apical and basal ends of potato during cold storage. Int. J. Veg. Sci. 28(3):280–296. doi: 10.1080/19315260.2021.1958402.
  • Dong, S., and D.M. Beckles. 2019. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response. J. Plant Physiol. 234-235:80–93. doi: 10.1016/j.jplph.2019.01.007.
  • Duarte-Delgado, D., C.E. Ñústez-López, C.E. Narváez-Cuenca, L.P. Restrepo-Sánchez, S.E. Melo, F. Sarmiento, A.C. Kushalappa, and T. Mosquera-Vásquez. 2016. Natural variation of sucrose, glucose and fructose contents in Colombian genotypes of Solanum tuberosum Group Phureja at harvest. J. Sci. Food Agric. 96(12):4288–4294. doi: 10.1002/jsfa.7783.
  • Geigenberger, P. 2003. Regulation of sucrose to starch conversion in growing potato tubers. J. Exp. Bot. 54:457–465. doi: 10.1093/jxb/erg074
  • Geigenberger, P., and M. Stitt. 1993. Sucrose synthase catalyses a readily reversible reaction in vivo in developing potato tubers and other plant tissues. Planta 189(3):329–339. doi: 10.1007/BF00194429.
  • Gupta, H. 2019. Relating tuber dormancy length with antioxidant and low-temperature sweetening (LTS) in potato cultivars. Ludhiana, India, MS Department of Biochemistry, Punjab Agricultural University, Thesis. http://krishikosh.egranth.ac.in/handle/1/5810137711.
  • Gupta, H., and V.K. Zhawar. 2023. Cold induced sweetening and antioxidant activity of potato genotypes during cold storage. Braz. Arch. Biol. Technol 66:e23210258. doi: 10.1590/1678-4324-2023210258
  • Gupta, S.K., J. Crants, and M. Gururani. 2019. Identification and impact of stable prognostic biochemical markers for cold-induced sweetening resistance on selection efficiency in potato (Solanum tuberosum L.) breeding programs. PLOS. ONE. 14(12):e0225411. doi: 10.1371/journal.pone.0225411.
  • Herman, D.J., L.O. Knowles, and N.R. Knowles. 2016. Low oxygen storage modulates invertase activity to attenuate cold-induced sweetening and loss of process quality in potato (Solanum tuberosumL.). Postharvest Biol. Technol. 121:106–117. doi: 10.1016/j.postharvbio.2016.07.017.
  • Hou, J., H. Zhang, J. Liu, S. Reid, T. Liu, S. Xu, Z. Tian, U. Sonnewald, B. Song, and C. Xie. 2017. Amylases StAmy23, StBAM1 and StBAM9 regulate cold-induced sweetening of potato tubers in distinct ways. J. Exp. Bot. 68(9):2317–2331. doi: 10.1093/jxb/erx076.
  • Kleczkowski, L.A., M. Geisler, I. Ciereszko, and H. Johansson. 2004. UDP-glucose pyrophosphorylase. An old protein with new tricks. Plant Physiol. 134(3):912–918. doi: 10.1104/pp.103.036053
  • Kulichikhin, K., S. Mukherjee, and B.T. Ayele. 2016. Extraction and assays of ADP glucose pyrophosphorylase, soluble starch synthase and granule bound starch synthase from wheat (Triticum aestivum L.) grains. Bio-Protoc 6(18):e1929. doi: 10.21769/BioProtoc.1929.
  • Kumar, G., and N.R. Knowles. 1996. Oxidative stress results in increased sinks for metabolic energy during aging and sprouting of potato seed-tubers. Plant Physiol. 112(3):1301–1313. doi: 10.1104/pp.112.3.1301.
  • Liu, B., G. Zhang, A. Murphy, D.D. Koeyer, H. Tai, B. Bizimungu, H. Si, and X.-Q. Li. 2016. Differences between the bud end and stem end of potatoes in dry matter content, starch granule size, and carbohydrate metabolic gene expression at the growing and sprouting stages. J. Agric. Food. Chem. 64(5):1176–1184. doi: 10.1021/acs.jafc.5b05238.
  • Liu, H., J. Li, D. Zhou, W. Cai, M. Rehman, Y. Feng, Y. Kong, X. Liu, S. Fahad, and G. Deng. 2023. Impact of dormancy periods on some physiological and biochemical indices of potato tubers. Peer. J 11:e15923. doi: 10.7717/peerj.15923.
  • Liu, X., L. Chen, W. Shi, X. Xu, Z. Li, T. Liu, Q. He, C. Xie, B. Nie, and B. Song. 2021. Comparative transcriptome reveals distinct starch-sugar interconversion patterns in potato genotypes contrasting for cold-induced sweetening capacity. Food Chem. 334:127550. doi: 10.1016/j.foodchem.2020.127550.
  • Miron, D., and A.A. Schaffer. 1991. Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum mill. And the sucrose accumulating Lycopersicon hirsutum humb. And Bonpl. Plant Physiol. 95(2):623–627. doi: 10.1104/pp.95.2.623.
  • Schreiber, L., A.C. Nader-Nieto, E.M. Schönhals, B. Walkemeier, and C. Gebhardt. 2014. SNPs in genes functional in starch-sugar interconversion associate with natural variation of tuber starch and sugar content of potato (Solanum tuberosumL.). G3. (Bethesda) 4(10):1797–1811. doi: 10.1534/g3.114.012377.
  • Sergeeva, L.I., M.M.J. Claassens, D.C.L. Jamar, L.H.W. van der Plas, and D. Vreugdenhil. 2012. Starch-related enzymes during potato tuber dormancy and sprouting. Russ. J. Plant Physiol. 59(4):556–564. doi: 10.1134/S1021443712040115.
  • Shi, W., Q. Ma, W. Yin, T. Liu, Y. Song, Y. Chen, L. Song, H. Sun, S. Hu, T. Liu, et al. 2022. The transcription factor StTINY3 enhances cold-induced sweetening resistance by coordinating starch resynthesis and sucrose hydrolysis in potato. J. Exp. Bot. 73(14):4968–4980. doi: 10.1093/jxb/erac171.
  • Wiberley-Bradford, A.E., J.S. Busse, and P.C. Bethke. 2016. Temperature-dependent regulation of sugar metabolism in wild-type and low-invertase transgenic chipping potatoes during and after cooling for low-temperature storage. Postharvest Biol. Technol. 115:60–71. doi: 10.1016/j.postharvbio.2015.12.020.
  • Wiberley-Bradford, A.E., J.S. Busse, J. Jiang, and P.C. Bethke. 2014. Sugar metabolism, chip color, invertase activity, and gene expression during long-term cold storage of potato (Solanum tuberosum) tubers from wild-type and vacuolar invertase silencing lines of Katahdin. BMC. Res. Notes 7(1):1–10. doi: 10.1186/1756-0500-7-801.
  • Xiao, G., W. Huang, H. Cao, W. Tu, H. Wang, X. Zheng, J. Liu, B. Song, and C. Xie. 2018. Genetic loci conferring reducing sugar accumulation and conversion of cold-stored potato tubers revealed by QTL analysis in a diploid population. Front. Plant Sci. 9:1–10. doi: 10.3389/fpls.2018.00315.
  • Xie, Y., J.C. Onik, X. Hu, Y. Duan, and Q. Lin. 2018. Effects of (S)-carvone and gibberellin on sugar accumulation in potatoes during low temperature storage. Molecules 23(12):23123118. doi: 10.3390/molecules23123118.
  • Yamdeu, J.H.G., P.H. Gupta, N.J. Patel, A.K. Shah, and J.G. Talati. 2016. Effect of storage temperature on carbohydrate metabolism and development of cold-induced sweetening in Indian potato (Solanum tuberosum L.) varieties. J. Food Biochem. 40(1):71–83. doi: 10.1111/jfbc.12190.
  • Zommick, D.H., L.O. Knowles, M.J. Pavek, and N.R. Knowles. 2014. In‐season heat stress compromises postharvest quality and low‐temperature sweetening resistance in potato (Solanum tuberosumL.). Planta 239(6):1243–1263. doi: 10.1007/s00425-014-2048-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.