24
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The energy consumption and cost-emission cycle in greenhouse tomato production, from construction to packaging

, &

References

  • Ahmadbeyki, A., M. Ghahderijani, A. Borghaee, and H. Bakhoda. 2023. Energy use and environmental impacts analysis of greenhouse crops production using life cycle assessment approach: A case study of Anton, M.A. Montero, J.I. & Munoz, P. (2005). LCA and tomato production in Mediterranean greenhouses. International Journal of Agricultural Resources Governance and Ecology 4(2): 102-112.Cucumber and tomato from Tehran province, Iran. Energy. Rep. 9:988–999‏.
  • Anton, M. 2005. Development of a secondary standard for the absorbed dose to water based on the alanine EPR dosimetry system. Appl. Radiat. and Isot. 62(5):779–795.
  • Brodt, S., K.J. Kramer, A. Kendall, and G. Feenstra. 2013. Comparing environmental impacts of regional and national-scale food supply chains: A case study of processed tomatoes. Food. Policy 42:106–114. doi: 10.1016/j.foodpol.2013.07.004
  • Canakci, M., and I. Akinci. 2006. Energy use pattern analyses of greenhouse vegetable production. Energy. 31(8–9):1243–1256. doi: 10.1016/j.energy.2005.05.021
  • Cetin, B., and A. Vardar. 2008. An economic analysis of energy requirements and input costs for tomato production in Turkey. Renewable Energy. 33(3):428–433. doi: 10.1016/j.renene.2007.03.008
  • Cochran, W.G. 1977. The estimation of sample size. Sampling. Technol. 3:72–90.
  • Dias, G.M., N.W. Ayer, S. Khosla, R. Van Acker, S.B. Young, S. Whitney, and P. Hendricks. 2017. Life cycle perspectives on the sustainability of Ontario greenhouse tomato production: Benchmarking and improvement opportunities. J. Cleaner Prod. 140:831–839. doi: 10.1016/j.jclepro.2016.06.039
  • Digital World Atlas. 2021.
  • Elhami, B., M. Ghasemi Nejad Raeini, and F. Soheili-Fard. 2019. Energy and environmental indices through life cycle assessment of raisin production: A case study (Kohgiluyeh and Boyer-Ahmad Province, Iran). Renewable Energy. 141:507–515. doi: 10.1016/j.renene.2019.04.034
  • Elhami, B., M. Ghasemi Nejad Raini, M. Taki, A. Marzban, and M. Heidarisoltanabadi. 2021. Analysis and comparison of energy-economic-environmental cycle in two cultivation methods (seeding and transplanting) for onion production (case study: Central parts of Iran). Renewable Energy 178:875–890.
  • Esengun, K., G. Erdal, O. Gündüz, and H. Erdal. 2007. An economic analysis and energy use in stake-tomato production in Tokat province of Turkey. Renewable Energy. 32(11):1873–1881. doi: 10.1016/j.renene.2006.07.005
  • FAO (Fao. org/statistics). 2021.
  • Gallejones, P., G. Pardo, A. Aizpurua, and A. Del Prado. 2015. Life cycle assessment of first-generation biofuels using a nitrogen crop model. Sci. Total Environ 505:1191–1201. doi: 10.1016/j.scitotenv.2014.10.061
  • Gasol, C.M., X. Gabarrell, A. Anton, M. Rigola, J. Carrasco, P. Ciria, M.L. Solano, and J. Rieradevall. 2007. Life cycle assessment of a brassica carinata bioenergy cropping system in Southern Europe. Biomass Bioenerg. 31(8):543–555. doi: 10.1016/j.biombioe.2007.01.026
  • Gnansounou, E., P. Vaskan, and E.R. Pachón. 2015. Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries. Bioresour. Technol. 196:364–375.‏. doi: 10.1016/j.biortech.2015.07.072
  • Guinee, J. 2010. Sulphuric Acid Plant Fundamentals. Sulphuric Acid Short Course. Sulphuric acid short course, Vancouver, Canada. Int. J. Life Cycle Assess. 7.
  • Hatirli, S.A., B. Ozkan, and C. Fert. 2006. Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy. 31(4):427–438.‏. doi: 10.1016/j.renene.2005.04.007
  • Hesampour, R., M. Taki, R. Fathi, M. Hassani, and A. Halog. 2022. Energy-economic-environmental cycle evaluation comparing two polyethylene and polycarbonate plastic greenhouses in cucumber production (from production to packaging and distribution). Sci. Total Environ 828:154232. doi: 10.1016/j.scitotenv.2022.154232
  • I.P.C.C. 2006. Guidelines for national greenhouse gas inventories, In: H.S. Eggleston, L. Buendia, K. Miwa, T. Ngara, and K. Tanabe (eds.). Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan. www.ipccnggip
  • ISO 14040. 2006. Environmental Management Life Cycle Assessment Principles and Framework. Int. J. Life Cycle Assess. 11(2):36.
  • Kaab, A., M. Sharifi, H. Mobli, A. Nabavi-Pelesaraei, and K.W. Chau. 2019. Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production. Sci. Total Environ 664:1005–1019. doi: 10.1016/j.scitotenv.2019.02.004
  • Karakaya, A., and M. Özilgen. 2011. Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes. Energy 36(8):5101–5110. doi: 10.1016/j.energy.2011.06.007
  • Khanali, M., A. Akram, J. Behzadi, F. Mostashari-Rad, Z. Saber, K.W. Chau, and A. Nabavi-Pelesaraei. 2021. Multi-objective optimization of energy use and environmental emissions for walnut production using imperialist competitive algorithm. Appl. Energy 284:116342. doi: 10.1016/j.apenergy.2020.116342
  • Khoshnevisan, B., S. Rafiee, M. Omid, H. Mousazadeh, and S. Clark. 2014. Environmental impact assessment of tomato and cucumber cultivation in greenhouses using life cycle assessment and adaptive neuro-fuzzy inference system. J. Cleaner Prod. 73:183–192. doi: 10.1016/j.jclepro.2013.09.057
  • Kitani, O. 1999. Energy and biomass engineering, CIGR handbook of agricultural engineering, ASAE, St. Joseph, MI. Computational Water, Energy, and Environmental Engineering.
  • Lotfalian Dehkordi, A., and S. Shadmanfar. 2023. Investigate the energy–environmental indices for pomegranate molasses production: Evidence from Isfahan, Iran. Environ. Dev. Sustain. 26(3):1–21‏. doi: 10.1007/s10668-023-02952-4
  • Manfredi, M., and G. Vignali. 2014. Life cycle assessment of a packaged tomato puree: A comparison of environmental impacts produced by different life cycle phases. J. Cleaner Prod. 73(15):275–284. doi: 10.1016/j.jclepro.2013.10.010
  • Martin-Gorriz, B., M. Soto-García, and V. Martínez-Alvarez. 2014. Energy and greenhouse-gas emissions in irrigated agriculture of SE (southeast) Spain. Effects of alternative water supply scenarios. Energy 77:478–488. doi: 10.1016/j.energy.2014.09.031
  • Mousavi, M., M. Taki, M.G. Raeini, and F. Soheilifard. 2023. Evaluation of energy consumption and environmental impacts of strawberry production in different greenhouse structures using life cycle assessment (LCA) approach. Energy 280:128087. doi: 10.1016/j.energy.2023.128087
  • Naderi, S., M.G.N. Raini, and M. Taki. 2020. Measuring the energy and environmental indices for apple (production and storage) by life cycle assessment (case study: Semirom county, Isfahan, Iran). Environ. Sustainability Indic. 6:100034. doi: 10.1016/j.indic.2020.100034
  • Nemecek, T., and T. Kägi. 2007. Life cycle inventories of Swiss and European agricultural production systems final report ecoinvent V2.0 No. 15a. Agroscope Reckenholz-Taenikon Research Station ART, Swiss Centre for Life Cycle Inventories. Zurich and Dübendorf, CH, retrieved from: www.ecoinvent.ch
  • Nguyen, T.L.T., and J.E. Hermansen. 2012. System expansion for handling co-products in LCA of sugar cane bio-energy systems: GHG consequences of using molasses for ethanol production. Appl. Energy 89(1):254–261‏. doi: 10.1016/j.apenergy.2011.07.023
  • Notarnicola, B., K. Hayashi, M.A. Curran, and D. Huisingh. 2012. Progress in working towards a more sustainable Agri-food industry. J. Clean. Prod. 28:1–8. doi: 10.1016/j.jclepro.2012.02.007
  • Ozkan, B., R.F. Ceylan, and H. Kizilay. 2011. Comparison of energy inputs in glasshouse double crop (fall and summer crops) tomato production. Renewable Energy. 36(11):3217–3221. doi: 10.1016/j.renene.2011.03.042
  • Pahlavan, R., M. Omid, and A. Akram. 2011. Energy use efficiency in greenhouse tomato production in Iran. Energy 36(12):6714–6719‏. doi: 10.1016/j.energy.2011.10.038
  • Pahlavan, R., M. Omid, and A. Akram. 2012. Energy input–output analysis and application of artificial neural networks for predicting greenhouse basil production. Energy 37(1):171–176.
  • Pishgar-Komleh, S.H., A. Akram, A. Keyhani, P. Sefeedpari, P. Shine, and M. Brandao. 2020. Integration of life cycle assessment, artificial neural networks, and metaheuristic optimization algorithms for optimization of tomato-based cropping systems in Iran. Int. J. Life Cycle Assess. 25(3):620–632‏. doi: 10.1007/s11367-019-01707-6
  • Prasuhn, V. 2012. On-farm effects of tillage and crops on soil erosion measured over 10 years in Switzerland. Soil Tillage Res. 120:137–146.‏. doi: 10.1016/j.still.2012.01.002
  • Raheli, H., R.M. Rezaei, M.R. Jadidi, and H. Ghasemi Mobtaker. 2017. A two-stage DEA model to evaluate sustainability and energy efficiency of tomato production. Inf. Process. Agriculture. 4(4):342–350. doi: 10.1016/j.inpa.2017.02.004
  • Rajaeifar, M.A., A. Akram, B. Ghobadian, S. Rafiee, and M.D. Heidari. 2014. Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran. Energy 66:139–149. doi: 10.1016/j.energy.2013.12.059
  • Samavatean, N., S. Rafiee, H. Mobli, and A. Mohammadi. 2011. An analysis of energy use and relation between energy inputs and yield, costs and income of garlic production in Iran. Renewable Energy 36(6):1808–1813. doi: 10.1016/j.renene.2010.11.020
  • Tabatabaie, S.M.H., S. Rafiee, A. Keyhani, and A. Ebrahimi. 2013. Energy and economic assessment of prune production in Tehran province of Iran. J. Cleaner Prod. 39:280–284. doi: 10.1016/j.jclepro.2012.07.052
  • Taki, M., A. Rohani, F. Soheili-Fard, and A. Abdeshahi. 2018. Assessment of energy consumption and modeling of output energy for wheat production by neural network (MLP and RBF) and Gaussian process regression (GPR) models. J. Cleaner Prod. 172:3028–3041. doi: 10.1016/j.jclepro.2017.11.107
  • You, D., P. Tian, P. Sui, W. Zhang, B. Yang, and H. Qi. 2017. Short-term effects of tillage and residue on spring maize yield through regulating root-shoot ratio in Northeast China. Sci. Rep. 7(1):1–11. doi: 10.1038/s41598-017-13624-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.