0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Root morphology parameters and nutrient acquisition capabilities of grafted tomato plants in root-restricted conditions are subject to salinity and rootstock characteristics

, &

References

  • Arao, T., H. Takeda, and E. Nishihara. 2008. Reduction of cadmium translocation from roots to shoots in eggplant (Solanum melongena) by grafting onto Solanum torvum rootstock. Soil Sci. Plant. Nutr. 54(4):555–559. doi: 10.1111/j.1747-0765.2008.00269.x.
  • Assaha, D.V.M., A. Ueda, H. Saneoka, R. Al-Yahyai, and M.W. Yaish. 2017. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front. Physiol. 8. doi: 10.3389/fphys.2017.00509.
  • Babaj, I., G. Sallaku, and A. Balliu. 2014. The effects of endogenous mycorrhiza (Glomus spp.) on plant growth and yield of grafted cucumber (Cucumis sativum L.) under common commercial greenhouse conditions. Alb. J. Agr. Sci. 13:24–28.
  • Bailey-Serres, J., J.E. Parker, E.A. Ainsworth, G.E.D. Oldroyd, and J.I. Schroeder. 2019. Genetic strategies for improving crop yields. Nature 575(7781):109–118. doi: 10.1038/s41586-019-1679-0.
  • Balliu, A., and G. Sallaku. 2021. The environment temperature affects post-germination growth and root system architecture of pea (Pisum sativum L.) plants. Sci. Hortic. 278:278. doi: 10.1016/j.scienta.2020.109858.
  • Balliu, A., G. Sallaku, and B. Rewald. 2015. AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustain 7(12):15967–15981. doi: 10.3390/su71215799.
  • Balliu, A., G. Vuksani, T. Nasto, L. Haxhinasto, and S. Kaçiu. 2008. Grafting effects on tomato growth rate, yield, and fruit quality under saline irrigation water. Acta. Hortic. 801(801):1161–1166. doi: 10.17660/ActaHortic.2008.801.141.
  • Balliu, A., Y. Zheng, G. Sallaku, J.A. Fernández, N.S. Gruda, and Y. Tuzel. 2021. Environmental and cultivation factors affect the morphology, architecture, and performance of root systems in soilless grown plants. Horticulturae 7(8):243. doi: 10.3390/horticulturae7080243.
  • Bergmann, J., A. Weigelt, F. Van Der Plas, D.C. Laughlin, T.W. Kuyper, N. Guerrero-Ramirez, O.J. Valverde-Barrantes, H. Bruelheide, G.T. Fresche, C.M. Iversen, et al. 2020. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6(27):1–10. doi: 10.1126/sciadv.aba3756.
  • Chinnusamy, V., A. Jagendorf, and J.K. Zhu. 2005. Understanding and improving salt tolerance in plants. Crop Sci. 45(2):437–448. doi: 10.2135/cropsci2005.0437.
  • Copeman, R.H., C. Martin, and J.C. Stutz. 1996. Tomato growth in response to salinity and mycorrhizal fungi from saline or nonsaline soils. Hort. Science 31(3):341–344. doi: 10.21273/HORTSCI.31.3.341.
  • Dasgan, H.Y., H. Aktas, K. Abak, and I. Cakmak. 2002. Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant. Sci. 163(4):695–703. doi: 10.1016/S0168-9452(02)00091-2.
  • Del Amor, F.M., V. Martinez, and A. Cerdá. 2001. Salt tolerance of tomato plants as affected by stage of plant development. Hort. Sci. 36(7):1260–1263. doi: 10.21273/HORTSCI.36.7.1260.
  • Di Gioia, F., A. Signore, F. Serio, and P. Santamaria. 2013. Grafting improves tomato salinity tolerance through sodium partitioning within the shoot. Hort. Sci. 48(7):855–862. doi: 10.21273/hortsci.48.7.855.
  • Djidonou, D., X. Zhao, J.K. Brecht, and K.M. Cordasco. 2017. Influence of interspecific hybrid rootstocks on tomato growth, nutrient accumulation, yield, and fruit composition under greenhouse conditions. Horttechnology 27(6):868–877. doi: 10.21273/HORTTECH03810-17.
  • Estañ, M.T., M.M. Martinez-Rodriguez, F. Perez-Alfocea, T.J. Flowers, and M.C. Bolarin. 2005. Grafting raises the salt tolerance of tomatoes through limiting the transport of sodium and chloride to the shoot. J. Exp. Bot. 56(412):703–712. doi: 10.1093/jxb/eri027.
  • Evelin, H., R. Kapoor, and B. Giri. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Ann. Bot. 104(7):1263–1280. doi: 10.1093/aob/mcp251.
  • Gaion, L.A., L.T. Braz, and R.F. Carvalho. 2017. Grafting in vegetable crops: A great technique for agriculture. Int. J. Veg. Sci. 24(1):85–102. doi: 10.1080/19315260.2017.1357062.
  • Gandullo, J., S. Ahmad, E. Darwish, R. Karlova, and C. Testerink. 2021. Phenotyping tomato root developmental plasticity in response to salinity in soil rhizotrons. Plant. Phenomics 2021. doi: 10.34133/2021/2760532.
  • Giuffrida, F., C. Cassaniti, and C. Leonardi. 2013. The influence of rootstock on growth and ion concentrations in pepper (Capsicum annuum L.) under saline conditions. J. Hortic. Sci. Biotechnol. 88(1):110–116. doi: 10.1080/14620316.2013.11512943.
  • Gruda, N.S., J. Dong, and X. Li. 2024. From salinity to nutrient-rich vegetables: Strategies for quality enhancement in protected cultivation. Crit. Rev. Plant. Sci. 1–21. doi: 10.1080/07352689.2024.2351678.
  • Guo, M., X.S. Wang, H.D. Guo, S.Y. Bai, A. Khan, X.M. Wang, Y.M. Gao, and J.S. Li. 2022. Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. Front. Plant. Sci. 13:1–26. doi: 10.3389/fpls.2022.949541.
  • Hess, L., and H. De Kroon. 2007. Effects of rooting volume and nutrient availability as an alternative explanation for root self/non-self discrimination. J. Ecol 95(2):241–251. doi: 10.1111/j.1365-2745.2006.01204.x.
  • Huang, Y., J. Li, B. Hua, Z. Liu, M. Fan, and Z. Bie. 2013. Grafting onto different rootstocks as a means to improve watermelon tolerance to low potassium stress. Sci. Hortic. 149:80–85. doi: 10.1016/j.scienta.2012.02.009.
  • Ibrahim Al, M. 2018. Salt tolerance of some tomato (Solanum lycoversicum L.) cultivars for salinity under controlled conditions. Am. J. Plant. Physiol. 13(2):58–64. doi: 10.3923/ajpp.2018.58.64.
  • Kawaguchi, M., A. Taji, D. Backhouse, and M. Oda. 2008. Anatomy and physiology of graft incompatibility in solanaceous plants. J. Hortic. Sci. Biotechnol. 83(5):581–588. doi: 10.1080/14620316.2008.11512427.
  • Krishnamurthy, S.L., B.M. Lokeshkumar, S. Rathor, A.S. Warraich, S. Yadav, R.K. Gautam, R.K. Singh, and P.C. Sharma. 2022. Development of salt-tolerant rice varieties to enhancing productivity in salt-affected environments. Environ. Sci. Proc. 16(1):30. doi: 10.3390/environsciproc2022016030.
  • Kumar, P., L. Lucini, Y. Rouphael, M. Cardarelli, R.M. Kalunke, and G. Colla. 2015. Insight into the role of grafting and arbuscular mycorrhiza on cadmium stress tolerance in tomato. Front. Plant. Sci. 6:1–16. doi: 10.3389/fpls.2015.00477.
  • Kumar, P., M. Edelstein, M. Cardarelli, E. Ferri, and G. Colla. 2015. Grafting affects growth, yield, nutrient uptake, and partitioning under cadmium stress in tomato. Hort. Science 50(11):1654–1661. doi: 10.21273/hortsci.50.11.1654.
  • López-Marín, J., A. Gálvez, F.M. Del Amor, A. Albacete, J.A. Fernández, C. Egea-Gilabert, and F. Pérez-Alfocea. 2017. Selecting vegetative/generative/dwarfing rootstocks for improving fruit yield and quality in water stressed sweet peppers. Sci. Hortic. 214:9–17. doi: 10.1016/j.scienta.2016.11.012.
  • Martorana, M., F. Giuffrida, C. Leonardi, and S. Kaya. 2007. Influence of rootstock on tomato response to salinity. Acta Hortic 747(747):555–561. doi: 10.17660/ActaHortic.2007.747.72.
  • Meça, E., G. Sallaku, and A. Balliu. 2016. Artificial inoculation of AM fungi improves nutrient uptake efficiency in salt stressed pea (Pissum Sativum L.) plants. J. Agric. Stud. 4(3):37. doi: 10.5296/jas.v4i3.9585.
  • Mielcarek, A., K. Kłobukowska, J. Rodziewicz, W. Janczukowicz, and K.Ł. Bryszewski. 2024. Water nutrient management in soilless plant cultivation versus sustain. Sustainability 16(1):152. doi: 10.3390/su16010152.
  • Mori, S., S. Uraguchi, S. Ishikawa, and T. Arao. 2009. Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum. Environ. Exp. Bot 67(1):127–132. doi: 10.1016/j.envexpbot.2009.05.006.
  • Munns, R. 2002. Comparative physiology of salt and water stress. Plant. Cell. Environ. 25(2):239–250. doi: 10.1046/j.0016-8025.2001.00808.x.
  • Munns, R., and A. Termaat. 1986. Whole-plant responses to salinity. Funct. Plant. Biol. 13(1):143. doi: 10.1071/PP9860143.
  • Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant. Biol. 59(1):651–681. doi: 10.1146/annurev.arplant.59.032607.092911.
  • Niu, M., L. Wei, Y. Peng, Y. Huang, and Z. Bie. 2022. Mechanisms of increasing salt resistance of vegetables by grafting. Veg. Res. 2(1):1–9. doi: 10.48130/vr-2022-0008.
  • Paez-Garcia, A., C.M. Motes, W.R. Scheible, R. Chen, E.B. Blancaflor, and M.J. Monteros. 2015. Root traits and phenotyping strategies for plant improvement. Plants 4(2):334–355. doi: 10.3390/plants4020334.
  • Perez-Alfocea, F., M.E. Balibrea, A.S. Cruz, and M.T. Estan. 1996. Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant. Soil 180(2):251–257. doi: 10.1007/BF00015308.
  • Raviv, M., J.H. Lieth, A. Bar-Tal, and A. Silber. 2008. Growing plants in soilless culture: Operational conclusions, pp. 545–573. In: M. Raviv and J.H. Lieth (eds). Soilless culture: Theory and practice. Elsevier, London.
  • Rouphael, Y., E. Rea, M. Cardarelli, M. Bitterlich, D. Schwarz, and G. Colla. 2016. Can adverse effects of acidity and aluminum toxicity be alleviated by appropriate rootstock selection in cucumber? Front. Plant. Sci. 7:1–12. doi: 10.3389/fpls.2016.01283.
  • Ryser, P. 1996. The importance of tissue density for growth and life span of leaves and roots: A comparison of five ecologically contrasting grasses. Funct. Ecol. 10(6):717. doi: 10.2307/2390506.
  • Sallaku, G., B. Rewald, H. Sandén, and A. Balliu. 2022. Scions impact biomass allocation and root enzymatic activity of rootstocks in grafted melon and watermelon plants. Front. Plant. Sci. 13:1–16. doi: 10.3389/fpls.2022.949086.
  • Sallaku, G., F. Thomaj, G. Vuksani, and A. Balliu. 2021. Seed priming enhances root morphology parameters and improves growth of cucumber plants under non-favorable temperature conditions. Acta. Hortic. 1320(1320):335–342. doi: 10.17660/ActaHortic.2021.1320.44.
  • Sallaku, G., G. Vuksani, and A. Balliu. 2020. Seed germination and initial growth of pepper seedlings is influenced by environment temperature and priming method. J. Agric. Stud. 8(4):540. doi: 10.5296/jas.v8i4.17831.
  • Sallaku, G., H. Sandén, I. Babaj, S. Kaciu, A. Balliu, and B. Rewald. 2019. Specific nutrient absorption rates of transplanted cucumber seedlings are highly related to RGR and influenced by grafting method, AMF inoculation and salinity. Sci. Hortic 243:177–188. doi: 10.1016/j.scienta.2018.08.027.
  • Sambo, P., C. Nicoletto, A. Giro, Y. Pii, F. Valentinuzzi, T. Mimmo, P. Lugli, G. Orzes, F. Mazzetto, S. Astolfi, et al. 2019. Hydroponic solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Front. Plant. Sci. 10. doi: 10.3389/fpls.2019.00923.
  • Sánchez-Rodríguez, E., R. Leyva, C. Constán-Aguilar, L. Romero, and J.M. Ruiz. 2014. How does grafting affect the ionome of cherry tomato plants under water stress? Soil Sci. Plant. Nutr 60(2):145–155. doi: 10.1080/00380768.2013.870873.
  • Savvas, D., D. Papastavrou, G. Ntatsi, A. Ropokis, C. Olympios, H. Hartmann, and D. Schwarz. 2009. Interactive effects of grafting and manganese supply on growth, yield, and nutrient uptake by tomato. Hort Science 44(7):1978–1982. doi: 10.21273/hortsci.44.7.1978.
  • Savvas, D., G.B. Öztekin, M. Tepecik, A. Ropokis, Y. Tüzel, G. Ntatsi, and D. Schwarz. 2017. Impact of grafting and rootstock on nutrient-to-water uptake ratios during the first month after planting of hydroponically grown tomato. J. Hortic. Sci. Biotechnol 92(3):294–302. doi: 10.1080/14620316.2016.1265903.
  • Savvas, D., and N. Gruda. 2018. Application of soilless culture technologies in the modern greenhouse industry – a review. Europ. J. Hortic. Sci. 83(5):280–293. doi: 10.17660/eJHS.2018/83.5.2.
  • Schwarz, D., G.B. Öztekin, Y. Tüzel, B. Brückner, and A. Krumbein. 2013. Rootstocks can enhance tomato growth and quality characteristics at low potassium supply. Sci. Hortic. 149:70–79. doi: 10.1016/j.scienta.2012.06.013.
  • Seth, R. 2022. Screening for salinity tolerance in tomato during germination using in vitro approach- a Review. Int. J. Botany St. 7(1):121–125.
  • Shabala, L., J. Zhang, I. Pottosin, J. Bose, M. Zhu, A.T. Fuglsang, A. Velarde-Buendia, A. Massart, C.B. Hill, U. Roessner, et al. 2016. Cell-type-specific H+-ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity Stress. Plant. Physiol. 172(4):2445–2458. doi: 10.1104/pp.16.01347.
  • Shelden, M.C., and R. Munns. 2023. Crop root system plasticity for improved yields in saline soils. Front. Plant. Sci. 14:1–14. doi: 10.3389/fpls.2023.1120583.
  • Shi, K., W.H. Hu, D.K. Dong, Y.H. Zhou, and J.Q. Yu. 2007. Low O2 supply is involved in the poor growth in root-restricted plants of tomato (Lycopersicon esculentum Mill.). Environ. Exp. Bot. 61(2):181–189. doi: 10.1016/j.envexpbot.2007.05.010.
  • Shirani Bidabadi, S., R. Abolghasemi, and S.J. Zheng. 2018. Grafting of watermelon (Citrullus lanatus cv. Mahbubi) onto different squash rootstocks as a means to minimize cadmium toxicity. Int. J. Phytoremed 20(7):730–738. doi: 10.1080/15226514.2017.1413338.
  • Shiyab, S.M., M.A. Shatnawi, R.A. Shibli, N.G. Al Smeirat, J. Ayad, and M.W. Akash. 2013. Growth, nutrient acquisition, and physiological responses of hydroponic grown tomato to sodium chloride salt induced stress. J. Plant. Nutr. 36(4):665–676. doi: 10.1080/01904167.2012.754037.
  • Singh, H., P. Kumar, S. Chaudhari, and M. Edelstein. 2017. Tomato grafting: A global perspective. HortScience 52(10):1328–1336. doi: 10.21273/HORTSCI11996-17.
  • Soteriou, G.A., and M.C. Kyriacou. 2015. Rootstock-mediated effects on watermelon field performance and fruit quality characteristics. Int. J. Veg. Sc 21(4):344–362. doi: 10.1080/19315260.2014.881454.
  • Tüzel, Y., and A. Balliu. 2021. Advances in liquid -and solid-medium soilless culture systems, pp. 1–36. In: N.S. Gruda (ed.). Advances in horticultural soilless culture. Burleigh Dodds Science, Cambridge, UK.
  • Van Zelm, E., Y. Zhang, and C. Testerink. 2020. Salt tolerance mechanisms of plants. Annu. Rev. Plant. Biol. 71(1):403–433. doi: 10.1146/annurev-arplant-050718-100005.
  • Venema, J.H., F. Giuffrida, I. Paponov, A. Albacete, F. Pérez-Alfocea, and I.C. Dodd. 2017. Rootstock-scion signalling: Key factors mediating scion performance, pp. 94–131. In: G. Colla, F. Pérez-Alfocea, and D. Schwarz (eds.). Vegetable grafting: Principles and practices. CABI. doi: 10.1079/9781780648972.0094.
  • Veselaj, E., G. Sallaku, and A. Balliu. 2018a. Combined application of arbuscular mycorrhizae fungi and plant growth promoting bacteria improves growth and nutrient uptake efficiency of pea (Pisum sativum L.) plants. Acta Sci. Pol. Hortorum Cultus 17(5):73–86. doi: 10.24326/asphc.2018.5.7.
  • Veselaj, E., G. Sallaku, and A. Balliu. 2018b. Tripartite relationships in legume crops are plant-microorganism-specific and strongly influenced by salinity. Agriculture 8(8):117. doi: 10.3390/agriculture8080117.
  • Waddell, H.A., R.J. Simpson, M.H. Ryan, H. Lambers, D.L. Garden, and A.E. Richardson. 2017. Root morphology and its contribution to a large root system for phosphorus uptake by Rytidosperma species (wallaby grass). Plant. Soil 412(1–2):7–19. doi: 10.1007/s11104-016-2933-y.
  • Zhao, C., H. Zhang, C. Song, J.K. Zhu, and S. Shabala. 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innov. 1(1):100017. doi: 10.1016/j.xinn.2020.100017.
  • Zhao, S., Q. Zhang, M. Liu, H. Zhou, C. Ma, and P. Wang. 2021. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 22(9):4609–4616. doi: 10.3390/ijms22094609.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.