0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Responses of mustard greens (Brassica juncea L.) to additional lighting duration of LED under greenhouse conditions in the tropical zone

ORCID Icon, , , , , , , & ORCID Icon show all

References

  • Adak, T., and N.V.K. Chakravarty. 2010. Quantifying the thermal heat requirement of Brassica in assessing biophysical parameters under semi-arid microenvironments. Int J. Biometeorol. 54(4):365–377. doi: 10.1007/s00484-009-0288-2.
  • Bantis, F., A. Koukounaras, A. Siomos, K. Radoglou, C. Dangitsis, and T. Koufakis. 2022. LED lighting can potentially reduce the growth cycle of watermelon seedlings to-be-grafted. Acta Hortic. 1337(1337):403–408. doi: 10.17660/ActaHortic.2022.1337.55.
  • Barta, D.J., T.W. Tibbitts, R.J. Bula, and R.C. Morrow. 1992. Evaluation of light emitting diode characteristics for a space-based plant irradiation source. Adv. Space Res. 12(5):141–149. doi: 10.1016/0273-1177(92)90020-X.
  • Björkman, M., I. Klingen, A.N.E. Birch, A.M. Bones, T.J.A. Bruce, T.J. Johansen, R. Meadow, J. Mølmann, R. Seljåsen, L.E. Smart, et al. 2011. Phytochemicals of Brassicaceae in plant protection and human health – influences of climate, environment and agronomic practice. Phytochemistry 72(7):538–556. doi: 10.1016/j.phytochem.2011.01.014.
  • Borthwick, H.A., S.B. Hendricks, M.W. Parker, E.H. Toole, and V.K. Toole. 1952. A reversible photoreaction controlling seed germination. Proc. Natl. Acad. Sci. 38(8):662–666. doi: 10.1073/pnas.38.8.662.
  • Bugbee, B. 2016. Toward an optimal spectral quality for plant growth and development: The importance of radiation capture. VIII International Symposium on Light in Horticulture 1134, Symposium venue East Lansing, Michigan (USA), p. 1–12.
  • Bula, R.J., R.C. Morrow, T.W. Tibbitts, D.J. Barta, R.W. Ignatius, and T.S. Martin. 1991. Light-emitting diodes as a radiation source for plants. HortScience 26(2):203–205. doi: 10.21273/HORTSCI.26.2.203.
  • Crump, M.C., C. Brown, R.J. Griffin-Nolan, L. Angeloni, N.P. Lemoine, and B.M. Seymoure. 2021. Effects of low-level artificial light at night on Kentucky bluegrass and an introduced herbivore. Front. Ecol. Evol. 9(September):1–9. doi: 10.3389/fevo.2021.732959.
  • De Carvalho Gonçalves, J.F., R.A. Marenco, and G. Vieira. 2001. Concentration of photosynthetic pigments and chlorophyll fluorescence of mahogany and tonka beans under two light environments. Rev. Bras. Fisiol. Veg. 13(2):149–157. doi: 10.1590/s0103-31312001000200004.
  • Eduard, R., W. Ruslan, I. Iskandar, and D. Setyanto. 2022. Setting temperature and humidity with a misting system in a pilot greenhouse at Cisauk-Tangerang, Indonesia. Appl. Sci. (Switzerland) 12(18):9192. doi: 10.3390/app12189192.
  • Emerson, R., and C.M. Lewis. 1943. The dependence of the quantum yield of chlorella photosynthesis on wavelength of light. Am. J. Botany 30(3):165–178. doi: 10.1002/j.1537-2197.1943.tb14744.x.
  • Fan, X.X., Z.G. Xu, X.Y. Liu, C.M. Tang, L.W. Wang, and X.L. Han. 2013. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scientia Hortic. 153:50–55. doi: 10.1016/j.scienta.2013.01.017.
  • He, J., L. Qin, and W.S. Chow. 2019. Impacts of LED spectral quality on leafy vegetables: Productivity closely linked to photosynthetic performance or associated with leaf traits? Int. J. Agric. Biol. Eng. 12(6):16–25. doi: 10.25165/j.ijabe.20191206.5178.
  • Hernández, R., and C. Kubota. 2014. Growth and morphological response of cucumber seedlings to supplemental red and blue photon flux ratios under varied solar daily light integrals. Scientia Hortic. 173:92–99. doi: 10.1016/j.scienta.2014.04.035.
  • Hidaka, K., K. Dan, and H. Imamura. 2013. Effect of supplemental lighting from different light sources on growth and yield of strawberry. Environ. Control. Biol. 51(1):41–47. doi: 10.2525/ecb.51.41.
  • Hoenecke, M.E., R.J. Bula, and T.W. Tibbitts. 1992. Importance of “blue” photon levels for lettuce seedlings grown under red-light-emitting diodes. HortScience 27(5):427–430. doi: 10.21273/HORTSCI.27.5.427.
  • Hogewoning, S.W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, and J. Harbinson. 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Botany 61(11):3107–3117. doi: 10.1093/jxb/erq132.
  • Hoover, W.H. 1937. The dependence of carbon dioxide assimilation in a higher plant on wavelength of radiation. Smithson. Miscellaneous Collect 95(21):1–13. https://hdl.handle.net/10088/23987.
  • Ilić, Z.S., and E. Fallik. 2017. Light quality manipulation improves vegetable quality at harvest and postharvest: A review. Environ. Exp. Botany 139:79–90. doi: 10.1016/j.envexpbot.2017.04.006.
  • Jishi, T., and K. Fujiwara. 2021. Time-varying photosynthetic photon flux density and relative spectral photon flux density distribution to improve plant growth and morphology in plant factories with artificial lighting. Hort. J. 90(2):147–153. doi: 10.2503/hortj.UTD-R015.
  • Jones-Baumgardt, C., D. Llewellyn, Q. Ying, and Y. Zheng. 2019. Intensity of sole-source light-emitting diodes affects growth, yield, and quality of Brassicaceae microgreens. HortScience 54(7):1168–1174. doi: 10.21273/HORTSCI13788-18.
  • Kamal, K.Y., M. Khodaeiaminjan, A.A. El‐Tantawy, D.A. Moneim, A.A. Salam, S.M.A.I. Ash‐Shormillesy, A. Attia, M.A.S. Ali, R. Herranz, M.A. El‐Esawi, et al. 2020. Evaluation of growth and nutritional value of brassica microgreens grown under red, blue and green LEDs combinations. Physiol. Plant 169(4):625–638. doi: 10.1111/ppl.13083.
  • Kang, J.H., S. KrishnaKumar, S.L.S. Atulba, B.R. Jeong, and S.J. Hwang. 2013. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Hortic. Environ. Biotechnol. 54(6):501–509. doi: 10.1007/s13580-013-0109-8.
  • Kayaçetın, F., F. Onemlı, G. Yilmaz, K.M. Khaward, A. Kinay, H. Hatıpoğlu, M.N. Kivilcimf, N. Kara, A. Köse, F. Sefaoğlu, et al. 2019. Growing degree day and seed yield relationships in mustard (Brassica juncea L.) under different sowing seasons and locations of Turkey. Tarim Bilimleri Dergisi 25(3):298–308. doi: 10.15832/ankutbd.424218.
  • Kosma, C., V. Triantafyllidis, A. Papasavvas, G. Salahas, and A. Patakas. 2013. Yield and nutritional quality of greenhouse lettuce as affected by shading and cultivation season. Emir. J. Food Agric. 25(12):974–979. doi: 10.9755/ejfa.v25i12.16738.
  • Lalruatfeli, P.C., A.A. Choudhary, and N.R. Mairan. 2021. Growth and yield attributes and yield of mustard (Brassica juncea L.) as influenced by different nutrient sources. Biol. Forum – Int. J. 10(12):1584–1587.
  • Li, H., Z. Xu, X. Liu, and X. Han. 2012. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). Nat. Sci. Fundation 4(4):262–273. doi: 10.5539/jas.v4n4p262.
  • Li, X., C. Wang, J. Liu, Y. Guo, F. Cheng, Y. Yang, and Z. Yan. 2023. Long supplementary light duration under same daily light integral provided by white plus blue light-emitting diodes improves quality of greenhouse-grown tomato seedlings. Hortic. Environ. Biotechnol. 64(6):963–975. doi: 10.1007/s13580-023-00540-z.
  • Lin, K.H., M.Y. Huang, W.D. Huang, M.H. Hsu, Z.W. Yang, and C.M. Yang. 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Hortic. 150:86–91. doi: 10.1016/j.scienta.2012.10.002.
  • Liu, J., and M.W. Van Iersel. 2021. Photosynthetic physiology of blue, green, and red light: Light intensity effects and underlying mechanisms. Front. Plant. Sci. 12(March):328. doi: 10.3389/fpls.2021.619987.
  • Lopez, R.G., Q. Meng, and E.S. Runkle. 2020. Blue radiation signals and saturates photoperiodic flowering of several long-day plants at crop-specific photon flux densities. Scientia Hortic. 271(May):2–6. doi: 10.1016/j.scienta.2020.109470.
  • Mackay, A. 2008. Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. J. Env. Qual. 37(6):2407–2407. doi: 10.2134/jeq2008.0015br.
  • McCree, K.J. 1971. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 9:191–216. doi: 10.1016/0002-1571(71)90022-7.
  • Moazzeni, M., S. Reezi, and M. Ghasemi Ghehsareh. 2020. Growth and chlorophyll fluorescence characteristics of sinningia speciosa under red, blue and white light-emitting diodes and sunlight. Adv. Hortic. Sci. 34(4):419–430. doi: 10.13128/ahsc-8966.
  • Nam, S.Y., H.S. Lee, S.-Y. Soh, and R.A.M. Cabahug. 2016. Effects of supplementary lighting intensity and duration on hydroponically grown Crassulaceae species. Flower Res. J. 24(1):1–9. doi: 10.11623/frj.2016.24.1.1.
  • Nhi, P.N., P.N. Long, T.T.S. Non, V.T.B. Thuy, L.V. Thuc, T.T. Ba, N. Pn, B. Tt, T. Lv, L. Pn, et al. 2016. Effects of color LED light intensities and different photoperiod regimes on growth of hydroponic lettuce (Lactuca sativa L.). Can Tho Univ. J. Sci. 2:1–7. doi: 10.22144/ctu.jen.2016.008.
  • Patrick Friesen. 2023. At what light intensity should I grow my plants? Accessed July 28, 2024. https://www.biochambers.com/pdfs/faq4.pdf.
  • Podsędek, A., B. Frąszczak, D. Sosnowska, D. Kajszczak, K. Szymczak, and R. Bonikowski. 2023. LED light quality affected bioactive compounds, antioxidant potential, and nutritional value of red and white cabbage microgreens. Appl. Sci. (Switzerland) 13(9):5435. doi: 10.3390/app13095435.
  • Prasad, S., A.N. Mishra, A.K. Singh, and M. Kumar. 2020. Effect of sowing temperature on growth and yield of Indian mustard (Brassica juncea L.). J. Pharmacogn. Phytochem. 9(2):446–449.
  • Rahman, M.J., M. Rafique Ahasan Chawdhery, M. Jahedur Rahman, M. Quamruzzaman, M. Mokshead Ali, S. Ahmed, and M. Dulal Sarkar. 2017. The effects of irrigation timing on growth, yield, and physiological traits of hydroponic lettuce. Azarian J. Agric. 4(February):193–199. www.azarianjournals.ir.
  • Samuolienė, G., A. Brazaitytė, J. Jankauskienė, A. Viršilė, R. Sirtautas, A. Novičkovas, S. Sakalauskienė, J. Sakalauskaitė, and P. Duchovskis. 2013. LED irradiance level affects growth and nutritional quality of brassica microgreens. Open Life Sci. 8(12):1241–1249. doi: 10.2478/s11535-013-0246-1.
  • Semenova, N.A., A.A. Smirnov, A.S. Dorokhov, Y.A. Proshkin, A.S. Ivanitskikh, N.O. Chilingaryan, A.A. Dorokhov, D.V. Yanykin, S.V. Gudkov, and A.Y. Izmailov. 2022. Evaluation of the effectiveness of different led irradiators when growing red mustard (Brassica juncea L.) in indoor farming. Energies 15(21):8076. doi: 10.3390/en15218076.
  • Songsaeng, A., P. Tittabutr, K. Umnajkitikorn, N. Boonkerd, J. Wongdee, P. Songwattana, P. Piromyou, T. Greetatorn, T. Girdthai, and N. Teaumroong. 2022. Application of light-emitting diodes with plant growth-promoting rhizobacteria and arbuscular mycorrhiza fungi for tomato seedling production. Agronomy 12(10):2458. doi: 10.3390/agronomy12102458.
  • Steele, R. (Ed.). 2004. Understanding and measuring the shelf‐life of food. Woodhead Publishing Limited and CRC Press, Cambridge.
  • Talib, N.S., D. Jamaludin, N. Sakinah, and A. Malek. 2020. Effect of light emitting diode (led) spectra on plant growth. Adv Agric. Food Res. J. 1(2):1–10. doi: 10.36877/aafrj.a0000135.
  • Tennessen, D.J., E.L. Singsaas, and T.D. Sharkey. 1994. Light-emitting diodes as a light source for photosynthesis research. Photosynth Res. 39(1):85–92. doi: 10.1007/BF00027146.
  • Terashima, I., T. Fujita, T. Inoue, W.S. Chow, and R. Oguchi. 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. Plant. Cell Physiol. 50(4):684–697. doi: 10.1093/pcp/pcp034.
  • Tripathy, B.C., and C.S. Brown. 1995. Root-shoot lnteraction in the greening of wheat seedlings grown under red light’. Plant Physiol. 107(2):407–411. https://academic.oup.com/plphys/article/107/2/407/6068993.
  • Walters, K.J., A.A. Hurt, and R.G. Lopez. 2019. Flowering, stem extension growth, and cutting yield of foliage annuals in response to photoperiod. Horts 54(4):661–666. doi: 10.21273/HORTSCI13789-18.
  • Wei, H., M. Wang, and B.R. Jeong. 2020. Effect of supplementary lighting duration on growth and activity of antioxidant enzymes in grafted watermelon seedlings. Agronomy 10(3):1–18. doi: 10.3390/agronomy10030337.
  • Xu, Y., Y. Chang, G. Chen, and H. Lin. 2016. The research on LED supplementary lighting system for plants. Optik 127(18):7193–7201. doi: 10.1016/j.ijleo.2016.05.056.
  • Yudina, L., E. Sukhova, E. Gromova, M. Mudrilov, Y. Zolin, A. Popova, V. Nerush, A. Pecherina, A.A. Grishin, A.A. Dorokhov, et al. 2023. Effect of duration of LED lighting on growth, photosynthesis and respiration in lettuce. Plants 12(3):442. doi: 10.3390/plants12030442.
  • Yudina, L., E. Sukhova, M. Mudrilov, V. Nerush, A. Pecherina, A.A. Smirnov, A.S. Dorokhov, N.O. Chilingaryan, V. Vodeneev, and V. Sukhov. 2022. Ratio of intensities of blue and red light at cultivation influences photosynthetic light reactions, respiration, growth, and reflectance indices in lettuce. Biology 1(1):60. doi: 10.3390/biology11010060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.