831
Views
5
CrossRef citations to date
0
Altmetric
Extra Views

A roadmap for investigating the role of the prion protein in depression associated with neurodegenerative disease

&
Pages 131-142 | Received 21 Jan 2016, Accepted 02 Feb 2016, Published online: 08 Apr 2016

REFERENCES

  • Aguzzi A, Baumann F, Bremer J. The prion's elusive reason for being. Annu Rev Neurosci 2008; 31:439-77; PMID:18558863; http://dx.doi.org/10.1146/annurev.neuro.31.060407.125620
  • Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev 2008; 88:673-728; PMID:18391177; http://dx.doi.org/10.1152/physrev.00007.2007
  • Biasini E, Turnbaugh JA, Unterberger U, Harris DA. Prion protein at the crossroads of physiology and disease. Trends Neurosci 2012; 35:92-103; PMID:22137337; http://dx.doi.org/10.1016/j.tins.2011.10.002
  • Linden R, Cordeiro Y, Lima LM. Allosteric function and dysfunction of the prion protein. Cell Mol Life Sci 2012; 69:1105-24; PMID:21984610; http://dx.doi.org/10.1007/s00018-011-0847-7
  • Herms J, Tings T, Gall S, Madlung A, Giese A, Siebert H, Schurmann P, Windl O, Brose N, Kretzschmar H. Evidence of presynaptic location and function of the prion protein. J Neurosci 1999; 19:8866-75; PMID:10516306
  • Mironov A, Jr, Latawiec D, Wille H, Bouzamondo-Bernstein E, Legname G, Williamson RA, Burton D, DeArmond SJ, Prusiner SB, Peters PJ. Cytosolic prion protein in neurons. J Neurosci 2003; 23:7183-93; PMID:12904479
  • Kannenberg K, Groschup MH, Sigel E. Cellular prion protein and GABAA receptors: no physical association? Neuroreport 1995; 7:77-80; PMID:8742421
  • Rangel A, Madronal N, Gruart i Masso A, Gavin R, Llorens F, Sumoy L, Torres JM, Delgado-Garcia JM, Del Rio JA. Regulation of GABA(A) and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice. PLoS One 2009; 4:e7592; PMID:19855845; http://dx.doi.org/10.1371/journal.pone.0007592
  • Mouillet-Richard S, Pietri M, Schneider B, Vidal C, Mutel V, Launay JM, Kellermann O. Modulation of serotonergic receptor signaling and cross-talk by prion protein. J Biol Chem 2005; 280:4592-601; PMID:15590675; http://dx.doi.org/10.1074/jbc.M406199200
  • Beraldo FH, Arantes CP, Santos TG, Queiroz NG, Young K, Rylett RJ, Markus RP, Prado MA, Martins VR. Role of alpha7 nicotinic acetylcholine receptor in calcium signaling induced by prion protein interaction with stress-inducible protein 1. J Biol Chem 2010; 285:36542-50; PMID:20837487; http://dx.doi.org/10.1074/jbc.M110.157263
  • Carulla P, Bribian A, Rangel A, Gavin R, Ferrer I, Caelles C, Del Rio JA, Llorens F. Neuroprotective role of PrPC against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding. Mol Biol Cell 2011; 22:3041-54; PMID:21757544; http://dx.doi.org/10.1091/mbc.E11-04-0321
  • Black SA, Stys PK, Zamponi GW, Tsutsui S. Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity. Frontiers Cell Dev Biol 2014; 2:45; http://dx.doi.org/10.3389/fcell.2014.00045
  • Rial D, Pamplona FA, Moreira EL, Moreira KM, Hipolide D, Rodrigues DI, Dombrowski PA, Da Cunha C, Agostinho P, Takahashi RN, Walz R, Cunha RA, Prediger RD. Cellular prion protein is present in dopaminergic neurons and modulates the dopaminergic system. Eur J Neurosci 2014; 40:2479-86; PMID:24766164; http://dx.doi.org/10.1111/ejn.12600
  • Gasperini L, Meneghetti E, Pastore B, Benetti F, Legname G. Prion protein and copper cooperatively protect neurons by modulating NMDA receptor through S-nitrosylation. Antioxid Redox Signal 2015; 22:772-84; PMID:25490055; http://dx.doi.org/10.1089/ars.2014.6032
  • Beraldo FH, Arantes CP, Santos TG, Machado CF, Roffe M, Hajj GN, Lee KS, Magalhaes AC, Caetano FA, Mancini GL, et al. Metabotropic glutamate receptors transduce signals for neurite outgrowth after binding of the prion protein to laminin gamma1 chain. Faseb J 2011; 25:265-79; PMID:20876210; http://dx.doi.org/10.1096/fj.10-161653
  • Um JW, Kaufman AC, Kostylev M, Heiss JK, Stagi M, Takahashi H, Kerrisk ME, Vortmeyer A, Wisniewski T, Koleske AJ, et al. Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer abeta oligomer bound to cellular prion protein. Neuron 2013; 79:887-902; PMID:24012003; http://dx.doi.org/10.1016/j.neuron.2013.06.036
  • Westaway D, Jhamandas JH. The P's and Q's of cellular PrP-Abeta interactions. Prion 2012; 6:359-63; PMID:22874673; http://dx.doi.org/10.4161/pri.20675
  • Beckman D, Santos LE, Americo TA, Ledo JH, de Mello FG, Linden R. Prion Protein Modulates Monoaminergic Systems and Depressive-like Behavior in Mice. J Biol Chem 2015; 290:20488-98; PMID:26152722; http://dx.doi.org/10.1074/jbc.M115.666156
  • Gadotti VM, Bonfield SP, Zamponi GW. Depressive-like behaviour of mice lacking cellular prion protein. Behavioural Brain Res 2012; 227:319-23; http://dx.doi.org/10.1016/j.bbr.2011.03.012
  • Nuvolone M, Aguzzi A. Altered Monoaminergic Systems and Depressive-like Behavior in Congenic Prion Protein Knock-out Mice. J Biol Chem 2015; 290:26350; PMID:26500295; http://dx.doi.org/10.1074/jbc.L115.689117
  • Nuvolone M, Kana V, Hutter G, Sakata D, Mortin-Toth SM, Russo G, Danska JS, Aguzzi A. SIRPalpha polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells. J Exp Med 2013; 210:2539-52; PMID:24145514; http://dx.doi.org/10.1084/jem.20131274
  • de Almeida CJ, Chiarini LB, da Silva JP, PM ES, Martins MA, Linden R. The cellular prion protein modulates phagocytosis and inflammatory response. J Leukoc Biol 2005; 77:238-46; PMID:15539455; http://dx.doi.org/10.1189/jlb.1103531
  • Murata Y, Kotani T, Ohnishi H, Matozaki T. The CD47-SIRPalpha signalling system: its physiological roles and therapeutic application. J Biochem 2014; 155:335-44; PMID:24627525; http://dx.doi.org/10.1093/jb/mvu017
  • Beckman D, Santos LE, Americo TA, Ledo JH, de Mello FG, Linden R. Reply to Altered Monoaminergic Systems and Depressive-like Behavior in Congenic Prion Protein Knock-out Mice. J Biol Chem 2015; 290:26351; PMID:26500296; http://dx.doi.org/10.1074/jbc.L115.689232
  • Ohnishi H, Murata T, Kusakari S, Hayashi Y, Takao K, Maruyama T, Ago Y, Koda K, Jin FJ, Okawa K, et al. Stress-evoked tyrosine phosphorylation of signal regulatory protein α regulates behavioral immobility in the forced swim test. J Neurosci 2010; 30:10472-83; PMID:20685990; http://dx.doi.org/10.1523/JNEUROSCI.0257-10.2010
  • Jin G, Tsuji K, Xing C, Yang YG, Wang X, Lo EH. CD47 gene knockout protects against transient focal cerebral ischemia in mice. Exp Neurol 2009; 217:165-70; PMID:19233173; http://dx.doi.org/10.1016/j.expneurol.2009.02.004
  • Wang L, Lu Y, Deng S, Zhang Y, Yang L, Guan Y, Matozaki T, Ohnishi H, Jiang H, Li H. SHPS-1 deficiency induces robust neuroprotection against experimental stroke by attenuating oxidative stress. J Neurochem 2012; 122:834-43; PMID:22671569; http://dx.doi.org/10.1111/j.1471-4159.2012.07818.x
  • Spudich A, Frigg R, Kilic E, Kilic U, Oesch B, Raeber A, Bassetti CL, Hermann DM. Aggravation of ischemic brain injury by prion protein deficiency: role of ERK-1/-2 and STAT-1. Neurobiol Dis 2005; 20:442-9; PMID:15893468; http://dx.doi.org/10.1016/j.nbd.2005.04.002
  • Mariante RM, Nobrega A, Martins RA, Areal RB, Bellio M, Linden R. Neuroimmunoendocrine regulation of the prion protein in neutrophils. J Biol Chem 2012; 287:35506-15; PMID:22910907; http://dx.doi.org/10.1074/jbc.M112.394924
  • Pinheiro LP, Linden R, Mariante RM. Activation and function of murine primary microglia in the absence of the prion protein. J Neuroimmunol 2015; 286:25-32; PMID:26298321; http://dx.doi.org/10.1016/j.jneuroim.2015.07.002
  • Mouillet-Richard S, Mutel V, Loric S, Tournois C, Launay JM, Kellermann O. Regulation by neurotransmitter receptors of serotonergic or catecholaminergic neuronal cell differentiation. J Biol Chem 2000; 275:9186-92; PMID:10734054; http://dx.doi.org/10.1074/jbc.275.13.9186
  • Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche JL, Lehmann S, Launay JM, Kellermann O. Signal transduction through prion protein. Science 2000; 289:1925-8; PMID:10988071; http://dx.doi.org/10.1126/science.289.5486.1925
  • Mouillet-Richard S, Schneider B, Pradines E, Pietri M, Ermonval M, Grassi J, Richards JG, Mutel V, Launay JM, Kellermann O. Cellular prion protein signaling in serotonergic neuronal cells. Annals New York Acad Sci 2007; 1096:106-19
  • Mouillet-Richard S, Nishida N, Pradines E, Laude H, Schneider B, Feraudet C, Grassi J, Launay JM, Lehmann S, Kellermann O. Prions impair bioaminergic functions through serotonin- or catecholamine-derived neurotoxins in neuronal cells. J Biol Chem 2008; 283:23782-90; PMID:18617522; http://dx.doi.org/10.1074/jbc.M802433200
  • Lee HG, Park SJ, Choi EK, Carp RI, Kim YS. Increased expression of prion protein is associated with changes in dopamine metabolism and MAO activity in PC12 cells. J Mol Neurosci 1999; 13:121-6; PMID:10691299; http://dx.doi.org/10.1385/JMN:13:1-2:121
  • Coitinho AS, Roesler R, Martins VR, Brentani RR, Izquierdo I. Cellular prion protein ablation impairs behavior as a function of age. Neuroreport 2003; 14:1375-9; PMID:12876477
  • Nazor KE, Seward T, Telling GC. Motor behavioral and neuropathological deficits in mice deficient for normal prion protein expression. Biochim Biophys Acta 2007; 1772:645-53; PMID:17531449; http://dx.doi.org/10.1016/j.bbadis.2007.04.004
  • Gasperini L, Legname G. Prion protein and aging. Frontiers Cell Dev Biol 2014; 2:44; http://dx.doi.org/10.3389/fcell.2014.00044
  • Massimino ML, Peggion C, Loro F, Stella R, Megighian A, Scorzeto M, Blaauw B, Toniolo L, Sorgato MC, Reggiani C, et al. Age-dependent neuromuscular impairment in prion protein knock-out mice. Muscle Nerve 2016; 53(2):269-79; PMID:25989742; http://dx.doi.org/10.1002/mus.24708
  • Cross AJ, Kimberlin RH, Crow TJ, Johnson JA, Walker CA. Neurotransmitter metabolites, enzymes and receptors in experimental scrapie. J Neurological Sci 1985; 70:231-41; http://dx.doi.org/10.1016/0022-510X(85)90090-5
  • Bassant MH, Picard M, Olichon D, Cathala F, Court L. Changes in the serotonergic, noradrenergic and dopaminergic levels in the brain of scrapie-infected rats. Brain Res 1986; 367:360-3; PMID:2421836; http://dx.doi.org/10.1016/0006-8993(86)91619-7
  • Ledoux JM. Effects on the serotoninergic system in sub-acute transmissible spongiform encephalopathies: current data, hypotheses, suggestions for experimentation. Med Hypotheses 2005; 64:910-8; PMID:15780484; http://dx.doi.org/10.1016/j.mehy.2004.11.020
  • Durand-Gorde JM, Bert J, Nieoullon A. Changes in tyrosine hydroxylase, glutamic acid decarboxylase and choline acetyltransferase after local microinoculation of scrapie agent into the nigrostriatal system of the golden hamster. Brain Res 1985; 341:243-51; PMID:2864098; http://dx.doi.org/10.1016/0006-8993(85)91063-7
  • Yun SW, Choi EK, Ju WK, Ahn MS, Carp RI, Wisniewski HM, Kim YS. Extensive degeneration of catecholaminergic neurons to scrapie agent 87V in the brains of IM mice. Mol Chem Neuropathol 1998; 34:121-32; PMID:10327412; http://dx.doi.org/10.1007/BF02815074
  • Gunapala KM, Chang D, Hsu CT, Manaye K, Drenan RM, Switzer RC, Steele AD. Striatal pathology underlies prion infection-mediated hyperactivity in mice. Prion 2010; 4:302-15; PMID:20948312; http://dx.doi.org/10.4161/pri.4.4.13721
  • Gimbel DA, Nygaard HB, Coffey EE, Gunther EC, Lauren J, Gimbel ZA, Strittmatter SM. Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci 2010; 30:6367-74; PMID:20445063; http://dx.doi.org/10.1523/JNEUROSCI.0395-10.2010
  • Rosenblat JD, McIntyre RS, Alves GS, Fountoulakis KN, Carvalho AF. Beyond Monoamines-Novel Targets for Treatment-Resistant Depression: A Comprehensive Review. Curr Neuropharmacol 2015; 13:636-55; PMID:26467412; http://dx.doi.org/10.2174/1570159X13666150630175044
  • Thompson A, MacKay A, Rudge P, Lukic A, Porter MC, Lowe J, Collinge J, Mead S. Behavioral and psychiatric symptoms in prion disease. Am J Psychiatry 2014; 171:265-74; PMID:24585329; http://dx.doi.org/10.1176/appi.ajp.2013.12111460
  • Wanschitz J, Kloppel S, Jarius C, Birner P, Flicker H, Hainfellner JA, Gambetti P, Guentchev M, Budka H. Alteration of the serotonergic nervous system in fatal familial insomnia. Ann Neurol 2000; 48:788-91; PMID:11079543; http://dx.doi.org/10.1002/1531-8249(200011)48:5<788::AID-ANA13>3.0.CO;2-5
  • Kloppel S, Pirker W, Brucke T, Kovacs GG, Almer G. Beta-CIT SPECT demonstrates reduced availability of serotonin transporters in patients with Fatal Familial Insomnia. J Neural Transmission 2002; 109:1105-10; http://dx.doi.org/10.1007/s007020200093
  • Ragno M, Scarcella MG, Cacchio G, Capellari S, Di Marzio F, Parchi P, Trojano L. Striatal [123I] FP-CIT SPECT demonstrates dopaminergic deficit in a sporadic case of Creutzfeldt-Jakob disease. Acta neurologica Scandinavica 2009; 119:131-4; PMID:18638039; http://dx.doi.org/10.1111/j.1600-0404.2008.01075.x
  • Vital A, Fernagut PO, Canron MH, Joux J, Bezard E, Martin-Negrier ML, Vital C, Tison F. The nigrostriatal pathway in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 2009; 68:809-15; PMID:19535991; http://dx.doi.org/10.1097/NEN.0b013e3181abdae8
  • Benito-Leon J. Combined quinacrine and chlorpromazine therapy in fatal familial insomnia. Clin Neuropharmacol 2004; 27:201-3; PMID:15319710; http://dx.doi.org/10.1097/01.wnf.0000134853.36429.0e
  • Korth C, May BC, Cohen FE, Prusiner SB. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc Natl Acad Sci U S A 2001; 98:9836-41; PMID:11504948; http://dx.doi.org/10.1073/pnas.161274798
  • Trevitt CR, Collinge J. A systematic review of prion therapeutics in experimental models. Brain 2006; 129:2241-65; PMID:16816391; http://dx.doi.org/10.1093/brain/awl150
  • Lanctot KL, Herrmann N, Mazzotta P. Role of serotonin in the behavioral and psychological symptoms of dementia. J Neuropsychiatry Clin Neurosci 2001; 13:5-21; PMID:11207325; http://dx.doi.org/10.1176/jnp.13.1.5
  • Rodriguez JJ, Noristani HN, Verkhratsky A. The serotonergic system in ageing and Alzheimer's disease. Prog Neurobiol 2012; 99:15-41; PMID:22766041; http://dx.doi.org/10.1016/j.pneurobio.2012.06.010
  • Lee HB, Lyketsos CG. Depression in Alzheimer's disease: heterogeneity and related issues. Biological Psychiatry 2003; 54:353-62; PMID:12893110; http://dx.doi.org/10.1016/S0006-3223(03)00543-2
  • Zubenko GS, Zubenko WN, McPherson S, Spoor E, Marin DB, Farlow MR, Smith GE, Geda YE, Cummings JL, Petersen RC, et al. A collaborative study of the emergence and clinical features of the major depressive syndrome of Alzheimer's disease. Am J Psychiatry 2003; 160:857-66; PMID:12727688; http://dx.doi.org/10.1176/appi.ajp.160.5.857
  • Trillo L, Das D, Hsieh W, Medina B, Moghadam S, Lin B, Dang V, Sanchez MM, De Miguel Z, Ashford JW, Salehi A. Ascending monoaminergic systems alterations in Alzheimer's disease. translating basic science into clinical care. Neurosci Biobehavioral Rev 2013; 37:1363-79; http://dx.doi.org/10.1016/j.neubiorev.2013.05.008
  • Palmer AM, Wilcock GK, Esiri MM, Francis PT, Bowen DM. Monoaminergic innervation of the frontal and temporal lobes in Alzheimer's disease. Brain Res 1987; 401:231-8; PMID:2434191; http://dx.doi.org/10.1016/0006-8993(87)91408-9
  • Martorana A, Mori F, Esposito Z, Kusayanagi H, Monteleone F, Codeca C, Sancesario G, Bernardi G, Koch G. Dopamine modulates cholinergic cortical excitability in Alzheimer's disease patients. Neuropsychopharmacol 2009; 34:2323-8; http://dx.doi.org/10.1038/npp.2009.60
  • Koch G, Di Lorenzo F, Bonni S, Giacobbe V, Bozzali M, Caltagirone C, Martorana A. Dopaminergic modulation of cortical plasticity in Alzheimer's disease patients. Neuropsychopharmacol 2014; 39:2654-61; http://dx.doi.org/10.1038/npp.2014.119
  • Himeno E, Ohyagi Y, Ma L, Nakamura N, Miyoshi K, Sakae N, Motomura K, Soejima N, Yamasaki R, Hashimoto T, et al. Apomorphine treatment in Alzheimer mice promoting amyloid-β degradation. Ann Neurol 2011; 69:248-56; PMID:21387370; http://dx.doi.org/10.1002/ana.22319
  • Cirrito JR, Disabato BM, Restivo JL, Verges DK, Goebel WD, Sathyan A, Hayreh D, D'Angelo G, Benzinger T, Yoon H, et al. Serotonin signaling is associated with lower amyloid-β levels and plaques in transgenic mice and humans. Proc Natl Acad Sci U S A 2011; 108:14968-73; PMID:21873225; http://dx.doi.org/10.1073/pnas.1107411108
  • Noristani HN, Verkhratsky A, Rodriguez JJ. High tryptophan diet reduces CA1 intraneuronal β-amyloid in the triple transgenic mouse model of Alzheimer's disease. Aging Cell 2012; 11:810-22; PMID:22702392; http://dx.doi.org/10.1111/j.1474-9726.2012.00845.x
  • Perry VH, Cunningham C, Boche D. Atypical inflammation in the central nervous system in prion disease. Curr Opin Neurol 2002; 15:349-54; PMID:12045736; http://dx.doi.org/10.1097/00019052-200206000-00020
  • Eikelenboom P, Bate C, Van Gool WA, Hoozemans JJ, Rozemuller JM, Veerhuis R, Williams A. Neuroinflammation in Alzheimer's disease and prion disease. Glia 2002; 40:232-9; PMID:12379910; http://dx.doi.org/10.1002/glia.10146
  • Perry VH. The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease. Brain Behav Immun 2004; 18:407-13; PMID:15265532; http://dx.doi.org/10.1016/j.bbi.2004.01.004
  • Heppner FL, Ransohoff RM, Becher B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 2015; 16:358-72; PMID:25991443; http://dx.doi.org/10.1038/nrn3880
  • Sandu RE, Buga AM, Uzoni A, Petcu EB, Popa-Wagner A. Neuroinflammation and comorbidities are frequently ignored factors in CNS pathology. Neural Regen Res 2015; 10:1349-55; PMID:26604877; http://dx.doi.org/10.4103/1673-5374.165208
  • Brown DR. Microglia and prion disease. Microscopy Res Technique 2001; 54:71-80; http://dx.doi.org/10.1002/jemt.1122
  • Rozemuller AJ, Jansen C, Carrano A, van Haastert ES, Hondius D, van der Vies SM, Hoozemans JJ. Neuroinflammation and common mechanism in Alzheimer's disease and prion amyloidosis: amyloid-associated proteins, neuroinflammation and neurofibrillary degeneration. Neurodegener Dis 2012; 10:301-4; PMID:22398730; http://dx.doi.org/10.1159/000335380
  • Wojtera M, Sobow T, Kloszewska I, Liberski PP, Brown DR, Sikorska B. Expression of immunohistochemical markers on microglia in Creutzfeldt-Jakob disease and Alzheimer's disease: morphometric study and review of the literature. Folia Neuropathol 2012; 50:74-84; PMID:22505366
  • Llorens F, Lopez-Gonzalez I, Thune K, Carmona M, Zafar S, Andreoletti O, Zerr I, Ferrer I. Subtype and regional-specific neuroinflammation in sporadic creutzfeldt-jakob disease. Frontiers Aging Neurosci 2014; 6:198; http://dx.doi.org/10.3389/fnagi.2014.00198
  • Brown DR, Besinger A, Herms JW, Kretzschmar HA. Microglial expression of the prion protein. Neuroreport 1998; 9:1425-9; PMID:9631441; http://dx.doi.org/10.1097/00001756-199805110-00032
  • Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, van Noort JM. Inflammation in neurodegenerative diseases–an update. Immunol 2014; 142:151-66; http://dx.doi.org/10.1111/imm.12233
  • Nuvolone M, Sorce S, Schwarz P, Aguzzi A. Prion pathogenesis in the absence of NLRP3/ASC inflammasomes. PLoS One 2015; 10:e0117208; PMID:25671600; http://dx.doi.org/10.1371/journal.pone.0117208
  • Zhu C, Herrmann US, Li B, Abakumova I, Moos R, Schwarz P, Rushing EJ, Colonna M, Aguzzi A. Triggering receptor expressed on myeloid cells-2 is involved in prion-induced microglial activation but does not contribute to prion pathogenesis in mouse brains. Neurobiol Aging 2015; 36:1994-2003; PMID:25816748; http://dx.doi.org/10.1016/j.neurobiolaging.2015.02.019
  • Gomez-Nicola D, Fransen NL, Suzzi S, Perry VH. Regulation of microglial proliferation during chronic neurodegeneration. J Neurosci 2013; 33:2481-93; PMID:23392676; http://dx.doi.org/10.1523/JNEUROSCI.4440-12.2013
  • Grizenkova J, Akhtar S, Brandner S, Collinge J, Lloyd SE. Microglial Cx3cr1 knockout reduces prion disease incubation time in mice. BMC Neurosci 2014; 15:44; PMID:24655482; http://dx.doi.org/10.1186/1471-2202-15-44
  • Sorce S, Nuvolone M, Keller A, Falsig J, Varol A, Schwarz P, Bieri M, Budka H, Aguzzi A. The role of the NADPH oxidase NOX2 in prion pathogenesis. PLoS Pathog 2014; 10:e1004531; PMID:25502554; http://dx.doi.org/10.1371/journal.ppat.1004531
  • Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, Maier SF, Yirmiya R. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 2014; 19:699-709; PMID:24342992; http://dx.doi.org/10.1038/mp.2013.155
  • Yirmiya R, Rimmerman N, Reshef R. Depression as a Microglial Disease. Trends Neurosci 2015; 38:637-58; PMID:26442697; http://dx.doi.org/10.1016/j.tins.2015.08.001
  • Walker FR. A critical review of the mechanism of action for the selective serotonin reuptake inhibitors: do these drugs possess anti-inflammatory properties and how relevant is this in the treatment of depression? Neuropharmacol 2013; 67:304-17; http://dx.doi.org/10.1016/j.neuropharm.2012.10.002
  • Hashioka S, Klegeris A, Monji A, Kato T, Sawada M, McGeer PL, Kanba S. Antidepressants inhibit interferon-gamma-induced microglial production of IL-6 and nitric oxide. Exp Neurol 2007; 206:33-42; PMID:17481608; http://dx.doi.org/10.1016/j.expneurol.2007.03.022
  • Ledo JH, Azevedo EP, Clarke JR, Ribeiro FC, Figueiredo CP, Foguel D, De Felice FG, Ferreira ST. Amyloid-β oligomers link depressive-like behavior and cognitive deficits in mice. Mol Psychiatry 2013; 18:1053-4; PMID:23183490; http://dx.doi.org/10.1038/mp.2012.168
  • Santos LE, Beckman D, Ferreira ST. Microglial dysfunction connects depression and Alzheimer's disease. Brain Behav Immun 2015; S0889-1591(15):30056-8
  • Combs CK, Johnson DE, Cannady SB, Lehman TM, Landreth GE. Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of β-amyloid and prion proteins. J Neurosci 1999; 19:928-39; PMID:9920656
  • Ding T, Zhou X, Kouadir M, Shi F, Yang Y, Liu J, Wang M, Yin X, Yang L, Zhao D. Cellular prion protein participates in the regulation of inflammatory response and apoptosis in BV2 microglia during infection with Mycobacterium bovis. J Mol Neurosci 2013; 51:118-26; PMID:23345082; http://dx.doi.org/10.1007/s12031-013-9962-2
  • Shi F, Yang L, Kouadir M, Yang Y, Ding T, Wang J, Zhou X, Yin X, Zhao D. Prion protein participates in the regulation of classical and alternative activation of BV2 microglia. J Neurochem 2012; 124(2):168-74; PMID:23061439; http://dx.doi.org/10.1111/jnc.12053
  • Maes M. Evidence for an immune response in major depression: a review and hypothesis. Progress Neuro-Psychopharmacology Biol Psychiatry 1995; 19:11-38
  • Zorrilla EP, Luborsky L, McKay JR, Rosenthal R, Houldin A, Tax A, McCorkle R, Seligman DA, Schmidt K. The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun 2001; 15:199-226; PMID:11566046; http://dx.doi.org/10.1006/brbi.2000.0597
  • Perry VH. Contribution of systemic inflammation to chronic neurodegeneration. Acta Neuropathol 2010; 120:277-86; PMID:20644946; http://dx.doi.org/10.1007/s00401-010-0722-x
  • Cunningham C, Hennessy E. Co-morbidity and systemic inflammation as drivers of cognitive decline: new experimental models adopting a broader paradigm in dementia research. Alzheimers Res Ther 2015; 7:33; PMID:25802557; http://dx.doi.org/10.1186/s13195-015-0117-2
  • Licursi PC, Merz PA, Merz GS, Carp RI. Scrapie-induced changes in the percentage of polymorphonuclear neutrophils in mouse peripheral blood. Infect Immun 1972; 6:370-6; PMID:4118048
  • Carp RI, Merz PA, Licursi PC, Merz GS. Replication of the factor in scrapie material that causes a decrease in polymorphonuclear neutrophils. J Infect Dis 1973; 128:256-8; PMID:4737373; http://dx.doi.org/10.1093/infdis/128.2.256
  • Miragliotta G, Fumarulo R, Fumarola D. Inhibition of neutrophil functions by scrapie prion protein: description of some inhibitory properties. Acta Virol 1990; 34:517-22; PMID:1983177
  • Scali C, Prosperi C, Bracco L, Piccini C, Baronti R, Ginestroni A, Sorbi S, Pepeu G, Casamenti F. Neutrophils CD11b and fibroblasts PGE(2) are elevated in Alzheimer's disease. Neurobiol Aging 2002; 23:523-30; PMID:12009501; http://dx.doi.org/10.1016/S0197-4580(01)00346-3
  • Licastro F, Morini MC, Davis LJ, Malpassi P, Cucinotta D, Parente R, Melotti C, Savorani G. Increased chemiluminescence response of neutrophils from the peripheral blood of patients with senile dementia of the Alzheimer's type. J Neuroimmunol 1994; 51:21-6; PMID:8157733; http://dx.doi.org/10.1016/0165-5728(94)90124-4
  • Davydova TV, Fomina VG, Voskresenskaya NI, Doronina OA. Phagocytic activity and state of bactericidal systems in polymorphonuclear leukocytes from patients with Alzheimer's disease. Bull Exp Biol Med 2003; 136:355-7; PMID:14714081; http://dx.doi.org/10.1023/B:BEBM.0000010950.53560.e2
  • Garlind A, Nilsson E, Palmblad J. Calcium ion transients in neutrophils from patients with sporadic Alzheimer's disease. Neurosci Lett 1998; 255:95-8; PMID:9835223; http://dx.doi.org/10.1016/S0304-3940(98)00716-2
  • Baik SH, Cha MY, Hyun YM, Cho H, Hamza B, Kim DK, Han SH, Choi H, Kim KH, Moon M, et al. Migration of neutrophils targeting amyloid plaques in Alzheimer's disease mouse model. Neurobiol Aging 2014; 35:1286-92; PMID:24485508; http://dx.doi.org/10.1016/j.neurobiolaging.2014.01.003
  • Achilli C, Ciana A, Minetti G. Amyloid-β (25-35) peptide induces the release of pro-matrix metalloprotease 9 (pro-MMP-9) from human neutrophils. Mol Cell Biochem 2014; 397:117-23; PMID:25087121; http://dx.doi.org/10.1007/s11010-014-2178-0
  • Gabbita SP, Johnson MF, Kobritz N, Eslami P, Poteshkina A, Varadarajan S, Turman J, Zemlan F, Harris-White ME. Oral TNFalpha Modulation Alters Neutrophil Infiltration, Improves Cognition and Diminishes Tau and Amyloid Pathology in the 3xTgAD Mouse Model. PLoS One 2015; 10:e0137305; PMID:26436670; http://dx.doi.org/10.1371/journal.pone.0137305
  • Zenaro E, Pietronigro E, Della Bianca V, Piacentino G, Marongiu L, Budui S, Turano E, Rossi B, Angiari S, Dusi S, et al. Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med 2015; 21:880-6; PMID:26214837; http://dx.doi.org/10.1038/nm.3913
  • Rummel C, Inoue W, Poole S, Luheshi GN. Leptin regulates leukocyte recruitment into the brain following systemic LPS-induced inflammation. Mol Psychiatry 2010; 15:523-34; PMID:19773811; http://dx.doi.org/10.1038/mp.2009.98
  • Aguilar-Valles A, Kim J, Jung S, Woodside B, Luheshi GN. Role of brain transmigrating neutrophils in depression-like behavior during systemic infection. Mol Psychiatry 2014; 19:599-606; PMID:24126927; http://dx.doi.org/10.1038/mp.2013.137
  • Cunningham C, Wilcockson DC, Campion S, Lunnon K, Perry VH. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 2005; 25:9275-84; PMID:16207887; http://dx.doi.org/10.1523/JNEUROSCI.2614-05.2005
  • Joshi YB, Giannopoulos PF, Chu J, Pratico D. Modulation of lipopolysaccharide-induced memory insult, gamma-secretase, and neuroinflammation in triple transgenic mice by 5-lipoxygenase. Neurobiol Aging 2014; 35:1024-31; PMID:24332986; http://dx.doi.org/10.1016/j.neurobiolaging.2013.11.016
  • Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer's disease and other disorders. Nat Rev Neurosci 2011; 12:723-38; PMID:22048062
  • Alkadhi KA. Chronic psychosocial stress exposes Alzheimer's disease phenotype in a novel at-risk model. Frontiers Biosci 2012; 4:214-29; http://dx.doi.org/10.2741/E371
  • Machado A, Herrera AJ, de Pablos RM, Espinosa-Oliva AM, Sarmiento M, Ayala A, Venero JL, Santiago M, Villaran RF, Delgado-Cortes MJ, et al. Chronic stress as a risk factor for Alzheimer's disease. Rev Neurosci 2014; 25:785-804; PMID:25178904; http://dx.doi.org/10.1515/revneuro-2014-0035
  • Djamshidian A, Lees AJ. Can stress trigger Parkinson's disease? J Neurol Neurosurg Psychiatry 2014; 85:878-81; PMID:24259593; http://dx.doi.org/10.1136/jnnp-2013-305911
  • Greenberg MS, Tanev K, Marin MF, Pitman RK. Stress, PTSD, and dementia. Alzheimer's Dementia 2014; 10:S155-65; PMID:24924667; http://dx.doi.org/10.1016/j.jalz.2014.04.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.