1,686
Views
6
CrossRef citations to date
0
Altmetric
Research Papers

Dietary magnesium and copper affect survival time and neuroinflammation in chronic wasting disease

, , , , , , , & show all
Pages 228-250 | Received 29 Jul 2015, Accepted 17 Apr 2016, Published online: 24 May 2016

REFERENCES

  • Prusiner SB. Prions. Proc Natl Acad Sci U S A 1998; 95:13363-83; PMID:9811807; http://dx.doi.org/10.1073/pnas.95.23.13363
  • Miller MW, Williams ES. Prion disease: horizontal prion transmission in mule deer. Nature 2003; 425:35-6; PMID:12955129; http://dx.doi.org/10.1038/425035a
  • Miller MW, Williams ES, Hobbs NT, Wolfe LL. Environmental sources of prion transmission in mule deer. Emerg Infect Dis 2004; 10:1003-6; PMID:15207049; http://dx.doi.org/10.3201/eid1006.040010
  • Williams ES. Chronic wasting disease. Vet Pathol 2005; 42:530-49; PMID:16145200; http://dx.doi.org/10.1354/vp.42-5-530
  • Saunders SE, Bartelt-Hunt SL, Bartz JC. Occurrence, transmission, and zoonotic potential of chronic wasting disease. Emerging infectious diseases 2012; 18:369-76; PMID:22377159; http://dx.doi.org/10.3201/eid1803.110685
  • Miller MW, Conner MM. Epidemiology of chronic wasting disease in free-ranging mule deer: spatial, temporal, and demographic influences on observed prevalence patterns. J Wildl Dis 2005; 41:275-90; PMID:16107661; http://dx.doi.org/10.7589/0090-3558-41.2.275
  • Rigou P, Rezaei H, Grosclaude J, Staunton S, Quiquampoix H. Fate of prions in soil: adsorption and extraction by electroelution of recombinant ovine prion protein from montmorillonite and natural soils. Environ Sci Technol 2006; 40:1497-503; PMID:16568762; http://dx.doi.org/10.1021/es0516965
  • Johnson CJ, Phillips KE, Schramm PT, McKenzie D, Aiken JM, Pedersen JA. Prions adhere to soil minerals and remain infectious. PLoS Pathog 2006; 2:e32; PMID:16617377; http://dx.doi.org/10.1371/journal.ppat.0020032
  • Brown P, Gajdusek DC. Survival of scrapie virus after 3 years' interment. Lancet 1991; 337:269-70; PMID:1671114; http://dx.doi.org/10.1016/0140-6736(91)90873-N
  • Thomzig A, Kratzel C, Lenz G, Kruger D, Beekes M. Widespread PrP(Sc) accumulation in muscles of hamsters orally infected with scrapie. EMBO Rep 2003; 4:1-4; http://dx.doi.org/10.1038/sj.embor.embor827
  • Choi CJ, Kanthasamy A, Anantharam V, Kanthasamy AG. Interaction of metals with prion protein: possible role of divalent cations in the pathogenesis of prion diseases. Neurotoxicology 2006; 27:777-87; PMID:16860868; http://dx.doi.org/10.1016/j.neuro.2006.06.004
  • Kim NH, Choi JK, Jeong BH, Kim JI, Kwon MS, Carp RI, Kim YS. Effect of transition metals (Mn, Cu, Fe) and deoxycholic acid (DA) on the conversion of PrPC to PrPres. FASEB J 2005; 19:783-5; PMID:15758042
  • Kralovicova S, Fontaine SN, Alderton A, Alderman J, Ragnarsdottir KV, Collins SJ, Brown DR. The effects of prion protein expression on metal metabolism. Mol Cell Neurosci 2009; 41:135-47; PMID:19233277; http://dx.doi.org/10.1016/j.mcn.2009.02.002
  • Leach SP, Salman MD, Hamar D. Trace elements and prion diseases: a review of the interactions of copper, manganese and zinc with the prion protein. Anim Health Res Rev 2006; 7:97-105; PMID:17389057; http://dx.doi.org/10.1017/S1466252307001181
  • Sigurdsson EM, Brown DR, Alim MA, Scholtzova H, Carp R, Meeker HC, Prelli F, Frangione B, Wisniewski T. Copper chelation delays the onset of prion disease. J Biol Chem 2003; 278:46199-202; PMID:14519758; http://dx.doi.org/10.1074/jbc.C300303200
  • Brown DR, Hafiz F, Glasssmith LL, Wong BS, Jones IM, Clive C, Haswell SJ. Consequences of manganese replacement of copper for prion protein function and proteinase resistance. EMBO J 2000; 19:1180-6; PMID:10716918; http://dx.doi.org/10.1093/emboj/19.6.1180
  • Pushie MJ, Rauk A, Jirik FR, Vogel HJ. Can copper binding to the prion protein generate a misfolded form of the peptide? Biometals 2009; 22:159-75; PMID:19140013; http://dx.doi.org/10.1007/s10534-008-9196-x
  • Stockel J, Safar J, Wallace AC, Chohen FE, Prusiner SB. Prion protein selectively binds copper (II) ions. Biochemistry 1998; 37:7185-93; PMID:9585530; http://dx.doi.org/10.1021/bi972827k
  • Viles JH, Cohen FE, Prusiner SB, Goodin DB, Wright PE, Dyson HJ. Copper binding to the prion protein: structural implications of four identical cooperative binding sites. Proc Natl Acad Sci U S A 1999; 96:2042-7; PMID:10051591; http://dx.doi.org/10.1073/pnas.96.5.2042
  • Eikelenboom P, Bate C, Van Gool WA, Hoozemans JJ, Rozemuller JM, Veerhuis R, Williams A. Neuroinflammation in Alzheimer's disease and prion disease. Glia 2002; 40:232-9; PMID:12379910; http://dx.doi.org/10.1002/glia.10146
  • Crespo I, Roomp K, Jurkowski W, Kitano H, Del Sol A. Gene regulatory network analysis supports inflammation as a key neurodegeneration process in prion disease. BMC Syst Biol 2012; 6:132; PMID:23068602; http://dx.doi.org/10.1186/1752-0509-6-132
  • Cowan JA ed. The Biological Chemistry of Magnesium. New York: VCH Publishers Inc, 1995
  • Turnbull S, Tabner BJ, Brown DR, Allsop D. Copper-dependent generation of hydrogen peroxide from the toxic prion protein fragment PrP106-126. Neurosci Lett 2003; 336:159-62; PMID:12505617; http://dx.doi.org/10.1016/S0304-3940(02)01254-5
  • Bayer TA, Schafer S, Breyhan H, Wirths O, Treiber C, Multhaup G. A vicious circle: role of oxidative stress, intraneuronal Abeta and Cu in Alzheimer's disease. Clinical neuropathology 2006; 25:163-71; PMID:16866297
  • Tamguney G, Giles K, Bouzamondo-Bernstein E, Bosque PJ, Miller MW, Safar J, DeArmond SJ, Prusiner SB. Transmission of elk and deer prions to transgenic mice. J Virol 2006; 80:9104-14; PMID:16940522; http://dx.doi.org/10.1128/JVI.00098-06
  • Kong Q, Huang S, Zou W, Vanegas D, Wang M, Wu D, Yuan J, Zheng M, Bai H, Deng H, et al. Chronic wasting disease of elk: transmissibility to humans examined by transgenic mouse models. J Neurosci 2005; 25:7944-9; PMID:16135751; http://dx.doi.org/10.1523/JNEUROSCI.2467-05.2005
  • Hesketh S, Thompsett AR, Brown DR. Prion protein polymerisation triggered by manganese-generated prion protein seeds. J Neurochem 2012; 120:177-89; PMID:22007749; http://dx.doi.org/10.1111/j.1471-4159.2011.07540.x
  • Choi CJ, Anantharam V, Martin DP, Nicholson EM, Richt JA, Kanthasamy A, Kanthasamy AG. Manganese upregulates cellular prion protein and contributes to altered stabilization and proteolysis: relevance to role of metals in pathogenesis of prion disease. Toxicol Sci 2010; 115:535-46; PMID:20176619; http://dx.doi.org/10.1093/toxsci/kfq049
  • Bolea R, Hortells P, Martin-Burriel I, Vargas A, Ryffel B, Monzon M, Badiola JJ. Consequences of dietary manganese and copper imbalance on neuronal apoptosis in a murine model of scrapie. Neuropathol Appl Neurobiol 2010; 36:300-11; PMID:20070537; http://dx.doi.org/10.1111/j.1365-2990.2010.01065.x
  • Thackray AM, Knight R, Haswell SJ, Bujdoso R, Brown DR. Metal imbalance and compromised antioxidant function are early changes in prion disease. Biochem J 2002; 362:253-8; PMID:11829763; http://dx.doi.org/10.1042/bj3620253
  • Cowan JA. Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals 2002; 15:225-35; PMID:12206389; http://dx.doi.org/10.1023/A:1016022730880
  • Pushie MJ, Rauk A, Jirik FR, Vogel HJ. Can copper binding to the prion protein generate a misfolded form of the protein? Biometals 2009; 22:159-75; PMID:19140013; http://dx.doi.org/10.1007/s10534-008-9196-x
  • Stockel J, Safar J, Wallace AC, Cohen FE, Prusiner SB. Prion protein selectively binds copper(II) ions. Biochemistry 1998; 37:7185-93; PMID:9585530; http://dx.doi.org/10.1021/bi972827k
  • Barnham KJ, Cappai R, Beyreuther K, Masters CL, Hill AF. Delineating common molecular mechanisms in Alzheimer's and prion diseases. Trends in biochemical sciences 2006; 31:465-72; PMID:16820299; http://dx.doi.org/10.1016/j.tibs.2006.06.006
  • Brown DR. Brain proteins that mind metals: a neurodegenerative perspective. Dalton Trans 2009; (21):4069-76; PMID:19452053; http://dx.doi.org/10.1039/b822135a
  • Davies P, Brown DR. Manganese enhances prion protein survival in model soils and increases prion infectivity to cells. PLoS One 2009; 4:e7518; PMID:19844576; http://dx.doi.org/10.1371/journal.pone.0007518
  • Johnson CJ, Pedersen JA, Chappell RJ, McKenzie D, Aiken JM. Oral transmissibility of prion disease is enhanced by binding to soil particles. PLoS Pathog 2007; 3:e93; PMID:17616973; http://dx.doi.org/10.1371/journal.ppat.0030093
  • Saunders SE, Shikiya RA, Langenfeld K, Bartelt-Hunt SL, Bartz JC. Replication efficiency of soil-bound prions varies with soil type. J Virol 2011; 85:5476-82; PMID:21430062; http://dx.doi.org/10.1128/JVI.00282-11
  • Kuznetsova A, McKenzie D, Banser P, Siddique T, Aiken JM. Potential role of soil properties in the spread of CWD in western Canada. Prion 2014; 8:92-99; PMID:24618673; http://dx.doi.org/10.4161/pri.28467
  • Hortells P, Monleon E, Acin C, Vargas A, Vasseur V, Salomon A, Ryffel B, Cesbron JY, Badiola JJ, Monzon M. The effect of metal imbalances on scrapie neurodegeneration. Zoonoses Public Health 2010; 57:358-66; PMID:19486493
  • Bush AI. Copper, zinc, and the metallobiology of Alzheimer disease. Alzheimer Dis Assoc Disord 2003; 17:147-50; PMID:14512827; http://dx.doi.org/10.1097/00002093-200307000-00005
  • Bellingham SA, Lahiri DK, Maloney B, La Fontaine S, Multhaup G, Camakaris J. Copper depletion down-regulates expression of the Alzheimer's disease amyloid-beta precursor protein gene. J Biol Chem 2004; 279:20378-86; PMID:14985339; http://dx.doi.org/10.1074/jbc.M400805200
  • Kitazawa M, Cheng D, Laferla FM. Chronic copper exposure exacerbates both amyloid and tau pathology and selectively dysregulates cdk5 in a mouse model of AD. J Neurochem 2009; 108:1550-60; PMID:19183260; http://dx.doi.org/10.1111/j.1471-4159.2009.05901.x
  • Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE, et al. Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 1999; 274:37111-6; PMID:10601271; http://dx.doi.org/10.1074/jbc.274.52.37111
  • Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li QX, Tammer A, et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 2003; 60:1685-91; PMID:14676042; http://dx.doi.org/10.1001/archneur.60.12.1685
  • Wong BS, Chen SG, Colucci M, Xie Z, Pan T, Liu T, Li R, Gambetti P, Sy MS, Brown DR. Aberrant metal binding by prion protein in human prion disease. J Neurochem 2001; 78:1400-8; PMID:11579148; http://dx.doi.org/10.1046/j.1471-4159.2001.00522.x
  • Kim JI, Choi SI, Kim NH, Jin JK, Choi EK, Carp RI, Kim YS. Oxidative stress and neurodegeneration in prion diseases. Annals of the New York Academy of Sciences 2001; 928:182-6; PMID:11795509; http://dx.doi.org/10.1111/j.1749-6632.2001.tb05648.x
  • Hinerfeld D, Traini MD, Weinberger RP, Cochran B, Doctrow SR, Harry J, Melov S. Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, specific respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J Neurochem 2004; 88:657-67; PMID:14720215; http://dx.doi.org/10.1046/j.1471-4159.2003.02195.x
  • Behl C, Davis JB, Lesley R, Schubert D. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 1994; 77:817-27; PMID:8004671; http://dx.doi.org/10.1016/0092-8674(94)90131-7
  • Smith DG, Cappai R, Barnham KJ. The redox chemistry of the Alzheimer's disease amyloid beta peptide. Biochim Biophys Acta 2007; 1768:1976-90; PMID:17433250; http://dx.doi.org/10.1016/j.bbamem.2007.02.002
  • Tabner BJ, Turnbull S, Fullwood NJ, German M, Allsop D. The production of hydrogen peroxide during early-stage protein aggregation: a common pathological mechanism in different neurodegenerative diseases? Biochem Soc Trans 2005; 33:548-50; PMID:16042541; http://dx.doi.org/10.1042/BST0330548
  • Butterfield DA, Bader Lange ML, Sultana R. Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer's disease. Biochim Biophys Acta 2010; 1801:924-9; PMID:20176130; http://dx.doi.org/10.1016/j.bbalip.2010.02.005
  • White SN, O'Rourke KI, Gidlewski T, VerCauteren KC, Mousel MR, Phillips GE, Spraker TR. Increased risk of chronic wasting disease in Rocky Mountain elk associated with decreased magnesium and increased manganese in brain tissue. Can J Vet Res 2010; 74:50-3; PMID:20357959
  • Vural H, Demirin H, Kara Y, Eren I, Delibas N. Alterations of plasma magnesium, copper, zinc, iron and selenium concentrations and some related erythrocyte antioxidant enzyme activities in patients with Alzheimer's disease. J Trace Elem Med Biol 2010; 24:169-73; PMID:20569929; http://dx.doi.org/10.1016/j.jtemb.2010.02.002
  • Pan HC, Sheu ML, Su HL, Chen YJ, Chen CJ, Yang DY, Chiu WT, Cheng FC. Magnesium supplement promotes sciatic nerve regeneration and down-regulates inflammatory response. Magnes Res 2011; 24:54-70; PMID:21609904
  • Kim DJ, Xun P, Liu K, Loria C, Yokota K, Jacobs DR, Jr., He K. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care 2010; 33:2604-10; PMID:20807870; http://dx.doi.org/10.2337/dc10-0994
  • Cilliler AE, Ozturk S, Ozbakir S. Serum magnesium level and clinical deterioration in Alzheimer's disease. Gerontology 2007; 53:419-22; PMID:17992016; http://dx.doi.org/10.1159/000110873
  • Srivastava D, Subramanian RB, Madamwar D, Flora SJ. Protective effects of selenium, calcium, and magnesium against arsenic-induced oxidative stress in male rats. Arh Hig Rada Toksikol 2010; 61:153-9; PMID:20587388; http://dx.doi.org/10.2478/10004-1254-61-2010-1993
  • Yu J, Sun M, Chen Z, Lu J, Liu Y, Zhou L, Xu X, Fan D, Chui D. Magnesium modulates amyloid-beta protein precursor trafficking and processing. J Alzheimers Dis 2010; 20:1091-106; PMID:20413885
  • Glick JL. Dementias: the role of magnesium deficiency and an hypothesis concerning the pathogenesis of Alzheimer's disease. Med Hypotheses 1990; 31:211-25; PMID:2092675; http://dx.doi.org/10.1016/0306-9877(90)90095-V
  • Sugimoto J, Romani AM, Valentin-Torres AM, Luciano AA, Ramirez Kitchen CM, Funderburg N, Mesiano S, Bernstein HB. Magnesium decreases inflammatory cytokine production: a novel innate immunomodulatory mechanism. J Immunol 2012; 188:6338-46; PMID:22611240; http://dx.doi.org/10.4049/jimmunol.1101765
  • Lee M, Jantaratnotai N, McGeer E, McLarnon JG, McGeer PL. Mg2+ ions reduce microglial and THP-1 cell neurotoxicity by inhibiting Ca2+ entry through purinergic channels. Brain Res 2011; 1369:21-35; PMID:21040713; http://dx.doi.org/10.1016/j.brainres.2010.10.084
  • Huang CY, Liou YF, Chung SY, Lin WY, Jong GP, Kuo CH, Tsai FJ, Cheng YC, Cheng FC, Lin JY. Role of ERK signaling in the neuroprotective efficacy of magnesium sulfate treatment during focal cerebral ischemia in the gerbil cortex. Chin J Physiol 2010; 53:299-309; PMID:21793341; http://dx.doi.org/10.4077/CJP.2010.AMK063
  • Barbagallo M, Belvedere M, Di Bella G, Dominguez LJ. Altered ionized magnesium levels in mild-to-moderate Alzheimer's disease. Magnes Res 2011; 24:S115-21; PMID:21951617
  • Cherny RA, Legg JT, McLean CA, Fairlie DP, Huang X, Atwood CS, Beyreuther K, Tanzi RE, Masters CL, Bush AI. Aqueous dissolution of Alzheimer's disease Abeta amyloid deposits by biometal depletion. J Biol Chem 1999; 274:23223-8; PMID:10438495; http://dx.doi.org/10.1074/jbc.274.33.23223
  • Ozturk S, Cillier AE. Magnesium supplementation in the treatment of dementia patients. Med Hypotheses 2006; 67:1223-5; PMID:16790324; http://dx.doi.org/10.1016/j.mehy.2006.04.047
  • Soto C, Satani N. The intricate mechanisms of neurodegeneration in prion diseases. Trends Mol Med 2011; 17(1):14-24; http://dx.doi.org/10.1016/j.molmed.2010.09.001
  • Chiu FC, Goldman JE. Regulation of glial fibrillary acidic protein (GFAP) expression in CNS development and in pathological states. J Neuroimmunol 1985; 8:283-92; PMID:2989328; http://dx.doi.org/10.1016/S0165-5728(85)80067-9
  • Middeldorp J, Hol EM. GFAP in health and disease. Progress in neurobiology 2011; 93:421-43; PMID:21219963; http://dx.doi.org/10.1016/j.pneurobio.2011.01.005
  • Hoane MR. Treatment with magnesium improves reference memory but not working memory while reducing GFAP expression following traumatic brain injury. Restorative neurology and neuroscience 2005; 23:67-77; PMID:15990413
  • EPA US. Method 200.8. DETERMINATION OF TRACE ELEMENTS IN WATERS AND WASTES BY INDUCTIVELY COUPLED PLASMA - MASS SPECTROMETRY
  • EPA US. Method 6020A. INDUCTIVELY COUPLED PLASMA-MASS SPECTROMETRY
  • EPA US. Method 3052. MICROWAVE ASSISTED ACID DIGESTION OF SILICEOUS AND ORGANICALLY BASED MATRICES
  • Nelson DW, Sommers LE. Total carbon, organic carbon and organic matter digestion of organic matter and dissolution of silicates for total element analysis. Methods of Soil Analysis part 2 Chemical and Microbiological Properties. Madison: Soil Science Society of America Inc, 1982:570-1
  • Gee GW, Bauder JW. Particle Size Analysis. In: Klute A, ed. Methods of Soil Analysis Part 1 Physical and Mineralogic Methods. Madison: Soil Science of America, 1986
  • Nichols TA, Pulford B, Wyckoff AC, Meyerett C, Michel B, Gertig K, Hoover EA, Jewell JE, Telling GC, Zabel MD. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. Prion 2009; 3:171-83; PMID:19823039; http://dx.doi.org/10.4161/pri.3.3.9819
  • EPA U. Method 3052 MICROWAVE ASSISTED ACID DIGESTION OF SILICEOUS ANDORGANICALLY BASED MATRICES