1,086
Views
11
CrossRef citations to date
0
Altmetric
Extra Views

Amyloid cores in prion domains: Key regulators for prion conformational conversion

, , &
Pages 31-39 | Received 07 Dec 2016, Accepted 04 Jan 2017, Published online: 10 Mar 2017

REFERENCES

  • Invernizzi G, Papaleo E, Sabate R, Ventura S. Protein aggregation: Mechanisms and functional consequences. Int J Biochem Cell Biol 2012; 44(9):1541-54; PMID:22713792; http://dx.doi.org/10.1016/j.biocel.2012.05.023
  • Sabaté R, Ventura S. Cross-β-sheet supersecondary structure in amyloid folds: techniques for detection and characterization. Methods Mol Biol 2012; 932:237-57.
  • Anfinsen CB. Principles that govern the folding of protein chains. Science 1973; 181(4096):223-30; PMID:4124164; http://dx.doi.org/10.1126/science.181.4096.223
  • Toombs JA, Petri M, Paul KR, Kan GY, Ben-Hur A, Ross ED. De novo design of synthetic prion domains. Proc Natl Acad Sci U S A 2012; 109(17):6519-24; PMID:22474356; http://dx.doi.org/10.1073/pnas.1119366109
  • de Groot NS, Pallarés I, Avilés FX, Vendrell J, Ventura S. Prediction of “hot spots” of aggregation in disease-linked polypeptides. BMC Struct Biol 2005; 5:1-15; PMID:15663787; http://dx.doi.org/10.1186/1472-6807-5-18
  • Collins SJ, Lawson VA, Masters CL. Transmissible spongiform encephalopathies. Lancet 2004; 363(9402):51-61; PMID:14723996; http://dx.doi.org/10.1016/S0140-6736(03)15171-9
  • Si K. Prions: What are they good for? Annu Rev Cell Dev Biol 2015; 31(1):149-69.
  • Chien P, Weissman JS, DePace AH. Emerging principles of conformation-based prion inheritance. Annu Rev Biochem 2004; 73(1):617-56; PMID:15189155; http://dx.doi.org/10.1146/annurev.biochem.72.121801.161837
  • Liebman SW, Chernoff YO. Prions in yeast. Genetics 2012; 191(4):1041-72; PMID:22879407; http://dx.doi.org/10.1534/genetics.111.137760
  • Wickner RB, Edskes HK, Gorkovskiy A, Bezsonov EE, Stroobant EE. Yeast and fungal prions: amyloid-handling systems, amyloid structure, and prion biology. Adv Genet 2016; 93:191-236; PMID:26915272
  • Sabate R, Rousseau F, Schymkowitz J, Batlle C, Ventura S. Amyloids or Prions? That is the Question. Prion 2015; 9:200-6; PMID:26039159; http://dx.doi.org/10.1080/19336896.2015.1053685
  • Chakrabortee S, Byers JS, Jones S, Garcia DM, Bhullar B, Chang A, She R, Lee L, Fremin B, Lindquist S, et al. Intrinsically disordered proteins drive emergence and inheritance of biological traits. Cell 2016; 167(2):369-81; PMID:27693355; http://dx.doi.org/10.1016/j.cell.2016.09.017
  • Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci U S A 1999; 96(7):3590-4; PMID:10097081; http://dx.doi.org/10.1073/pnas.96.7.3590
  • Ross ED, Edskes HK, Terry MJ, Wickner RB. Primary sequence independence for prion formation. Proc Natl Acad Sci 2005; 102(36):12825-30; PMID:16123127; http://dx.doi.org/10.1073/pnas.0506136102
  • Alberti S, Halfmann R, King O, Kapila A, Lindquist S. A Systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 2009; 137(1):146-58; PMID:19345193; http://dx.doi.org/10.1016/j.cell.2009.02.044
  • Stapley BJ, Doig AJ. Hydrogen bonding interactions between glutamine and asparagine in α-helical peptides. J Mol Biol 1997; 272(3):465-73; PMID:9325104; http://dx.doi.org/10.1006/jmbi.1997.1262
  • Sabate R, Rousseau F, Schymkowitz J, Ventura S. What makes a protein sequence a prion? PLoS Comput Biol 2015; 11(1):e1004013; PMID:25569335; http://dx.doi.org/10.1371/journal.pcbi.1004013
  • Tanaka M, Collins SR, Toyama BH, Weissman JS. The physical basis of how prion conformations determine strain phenotypes. Nature 2006; 442(7102):585-9; PMID:16810177; http://dx.doi.org/10.1038/nature04922
  • Zambrano R, Conchillo-Sole O, Iglesias V, Illa R, Rousseau F, Schymkowitz J, Sabate R, Daura X, Ventura S. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores. Nucleic Acids Res 2015; 43(W1):W331-7; PMID:25977297; http://dx.doi.org/10.1093/nar/gkv490
  • Serio TR, Lindquist. The yeast prion [PSI+]: molecular insights and functional consequences. Adv Protein Chem 2002; 59:391-412.
  • Wickner RB. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 1994; 264:5669; PMID:7909170; http://dx.doi.org/10.1126/science.7909170
  • Du Z, Park KW, Yu H, Fan Q, Li L. Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat Genet 2008; 40(4):460-5; PMID:18362884; http://dx.doi.org/10.1038/ng.112
  • Holmes DL, Lancaster AK, Lindquist S, Halfmann R. Heritable Remodeling of Yeast Multicellularity by an Environmentally Responsive Prion. Cell 2013; 153(1):153-65; PMID:23540696; http://dx.doi.org/10.1016/j.cell.2013.02.026
  • Sant'Anna R, Fernández MR, Batlle C, Navarro S, de Groot NS, Serpell L, Ventura S. Characterization of amyloid cores in prion domains. Sci Rep 2016; 6:34274; PMID:27686217; http://dx.doi.org/10.1038/srep34274
  • Fernandez-Escamilla A-M, Rousseau F, Schymkowitz J, Serrano L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 2004; 22(10):1302-6; PMID:15361882; http://dx.doi.org/10.1038/nbt1012
  • de Groot NS, Castillo V, Graña-Montes R, Ventura S. AGGRESCAN: method, application, and perspectives for drug design. Methods Mol Biol 2012; 819:199-220; PMID:22183539
  • Walsh I, Seno F, Tosatto SCE, Trovato A. PASTA 2.0: an improved server for protein aggregation prediction. Nucleic Acids Res 2014; 42:W301-7; PMID:24848016; http://dx.doi.org/10.1093/nar/gku399
  • Petrakis S, Schaefer MH, Wanker EE, Andrade-Navarro MA. Aggregation of polyQ-extended proteins is promoted by interaction with their natural coiled-coil partners. Bioessays 2013; 35(6):503-7; PMID:23483542; http://dx.doi.org/10.1002/bies.201300001
  • Lupton CJ, Steer DL, Wintrode PL, Bottomley SP, Hughes VA, Ellisdon AM. Enhanced Molecular Mobility of Ordinarily Structured Regions Drives Polyglutamine Disease. J Biol Chem 2015; 290(40):24190-200; PMID:26260925; http://dx.doi.org/10.1074/jbc.M115.659532
  • Scarff CA, Almeida B, Fraga J, Macedo-Ribeiro S, Radford SE, Ashcroft AE. Examination of Ataxin-3 (atx-3) Aggregation by Structural Mass Spectrometry Techniques: A Rationale for Expedited Aggregation upon Polyglutamine (polyQ) Expansion. Mol Cell Proteomics 2015; 14(5):1241-53; PMID:25700012; http://dx.doi.org/10.1074/mcp.M114.044610
  • Wan W, Stubbs G. Fungal prion HET-s as a model for structural complexity and self-propagation in prions. Proc Natl Acad Sci U S A 2014; 111(14):5201-6; PMID:24706820; http://dx.doi.org/10.1073/pnas.1322933111
  • Osherovich LZ, Cox BS, Tuite MF, Weissman JS. Dissection and design of yeast prions. PLoS Biol 2004; 2(4):e86; http://dx.doi.org/10.1371/journal.pbio.0020086
  • Mészáros B, Dosztányi Z, Simon I, Blow N, Jones S, Thornton J, Diella F, Haslam N, Chica C, Budd A, et al. Disordered binding regions and linear motifs—bridging the gap between two models of molecular recognition. PLoS One 2012; 7(10):e46829; PMID:23056474; http://dx.doi.org/10.1371/journal.pone.0046829
  • Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE. Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. Chem Rev 2014; 114(13):6733-78; PMID:24926813; http://dx.doi.org/10.1021/cr400585q
  • Malinovska L, Kroschwald S, Alberti S. Protein disorder, prion propensities, and self-organizing macromolecular collectives. Biochim Biophys Acta 2013; 1834(5):918-31; PMID:23328411; http://dx.doi.org/10.1016/j.bbapap.2013.01.003
  • Buck PM, Kumar S, Singh SK. On the role of aggregation prone regions in protein evolution, stability, and enzymatic catalysis: insights from diverse analyses. PLoS Comput Biol 2013; 9(10):e1003291; PMID:24146608; http://dx.doi.org/10.1371/journal.pcbi.1003291
  • Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 2013; 495(7442):467-73; PMID:23455423; http://dx.doi.org/10.1038/nature11922
  • An L, Harrison PM. The evolutionary scope and neurological disease linkage of yeast-prion-like proteins in humans. Biol Direct 2016; 11:32; PMID:27457357; http://dx.doi.org/10.1186/s13062-016-0134-5
  • Gallardo R, Ramakers M, De Smet F, Claes F, Khodaparast L, Khodaparast L, Couceiro JR, Langenberg T, Siemons M, Nyström S, et al. De novo design of a biologically active amyloid. Science 2016; 354(6313):aah4949; PMID:27846578; http://dx.doi.org/10.1126/science.aah4949

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.