2,119
Views
25
CrossRef citations to date
0
Altmetric
Extra Views

Aβ seeds and prions: How close the fit?

, &
Pages 215-225 | Received 24 Apr 2017, Accepted 16 May 2017, Published online: 31 Jul 2017

REFERENCES

  • Prusiner SB. Some speculations about prions, amyloid, and Alzheimer's disease. N Engl J Med 1984; 310:661-3; PMID:6363926; https://doi.org/10.1056/NEJM198403083101021
  • Farquhar J, Gajdusek DC. Kuru: Early Letters and Field-Notes from the Collection of D. Carleton Gajdusek. New York (NY): Raven Press; 1981
  • Walker LC, Jucker M. Neurodegenerative diseases: expanding the prion concept. Annu Rev Neurosci 2015; 38:87-103; PMID:25840008; https://doi.org/10.1146/annurev-neuro-071714-033828
  • Collinge J. Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 2001; 24:519-50; PMID:11283320; https://doi.org/10.1146/annurev.neuro.24.1.519
  • Prusiner SB. Biology and genetics of prions causing neurodegeneration. Annu Rev Genet 2013; 47:601-23; PMID:24274755; https://doi.org/10.1146/annurev-genet-110711-155524
  • Collinge J. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature 2016; 539:217-26; PMID:27830781; https://doi.org/10.1038/nature20415
  • Beekes M, Thomzig A, Schulz-Schaeffer WJ, Burger R. Is there a risk of prion-like disease transmission by Alzheimer- or Parkinson-associated protein particles? Acta Neuropathol 2014; 128:463-76; PMID:25073522; https://doi.org/10.1007/s00401-014-1324-9
  • Holtzman DM, Goate A, Kelly J, Sperling R. Mapping the road forward in Alzheimer's disease. Sci Transl Med 2011; 3:114ps48; PMID:22190237; https://doi.org/10.1126/scitranslmed.3003529
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 2002; 297:353-6; PMID:12130773; https://doi.org/10.1126/science.1072994
  • Giannakopoulos P, Herrmann FR, Bussiere T, Bouras C, Kovari E, Perl DP, Morrison JH, Gold G, Hof PR. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease. Neurology 2003; 60:1495-500; PMID:12743238; https://doi.org/10.1212/01.WNL.0000063311.58879.01
  • Liebman SW, Chernoff YO. Prions in yeast. Genetics 2012; 191:1041-72; PMID:22879407; https://doi.org/10.1534/genetics.111.137760
  • Tuite MF. The natural history of yeast prions. Adv Appl Microbiol 2013; 84:85-137; PMID:23763759
  • Wickner RB, Edskes HK, Bateman DA, Kelly AC, Gorkovskiy A, Dayani Y, Zhou A. Amyloids and yeast prion biology. Biochemistry 2013; 52:1514-27; PMID:23379365; https://doi.org/10.1021/bi301686a
  • Eisenberg D, Jucker M. The amyloid state of proteins in human diseases. Cell 2012; 148:1188-203; PMID:22424229; https://doi.org/10.1016/j.cell.2012.02.022
  • Sipe JD, Benson MD, Buxbaum JN, Ikeda SI, Merlini G, Saraiva MJ, Westermark P. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid 2016; 23:209-13; PMID:27884064; https://doi.org/10.1080/13506129.2016.1257986
  • Sandberg MK, Al-Doujaily H, Sharps B, Clarke AR, Collinge J. Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 2011; 470:540-2; PMID:21350487; https://doi.org/10.1038/nature09768
  • Barron RM, King D, Jeffrey M, McGovern G, Agarwal S, Gill AC, Piccardo P. PrP aggregation can be seeded by pre-formed recombinant PrP amyloid fibrils without the replication of infectious prions. Acta Neuropathol 2016; 132:611-24; PMID:27376534; https://doi.org/10.1007/s00401-016-1594-5
  • Alibhai J, Blanco RA, Barria MA, Piccardo P, Caughey B, Perry VH, Freeman TC, Manson JC. Distribution of Misfolded Prion Protein Seeding Activity Alone Does Not Predict Regions of Neurodegeneration. PLoS Biol 2016; 14:e1002579; PMID:27880767; https://doi.org/10.1371/journal.pbio.1002579
  • Silveira JR, Raymond GJ, Hughson AG, Race RE, Sim VL, Hayes SF, Caughey B. The most infectious prion protein particles. Nature 2005; 437:257-61; PMID:16148934; https://doi.org/10.1038/nature03989
  • Divry P. Etude histochimique des plaques seniles. J Belge Neurol Psychiat 1927; 27:643-57
  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 1985; 82:4245-9; PMID:3159021; https://doi.org/10.1073/pnas.82.12.4245
  • Glenner GG, Wong CW. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120:885-90; PMID:6375662; https://doi.org/10.1016/S0006-291X(84)80190-4
  • DeArmond SJ, Prusiner SB. Etiology and pathogenesis of prion diseases. Am J Pathol 1995; 146:785-811; PMID:7717447
  • Nilsson KP, Hammarstrom P, Ahlgren F, Herland A, Schnell EA, Lindgren M, Westermark GT, Inganäs O. Conjugated polyelectrolytes–conformation-sensitive optical probes for staining and characterization of amyloid deposits. Chembiochem 2006; 7:1096-104; PMID:16729336; https://doi.org/10.1002/cbic.200500550
  • Wegenast-Braun BM, Skodras A, Bayraktar G, Mahler J, Fritschi SK, Klingstedt T, Mason JJ, Hammarström P, Nilsson KP, Liebig C, et al. Spectral discrimination of cerebral amyloid lesions after peripheral application of luminescent conjugated oligothiophenes. Am J Pathol 2012; 181:1953-60; PMID:23041059; https://doi.org/10.1016/j.ajpath.2012.08.031
  • Magnusson K, Simon R, Sjolander D, Sigurdson CJ, Hammarstrom P, Nilsson KP. Multimodal fluorescence microscopy of prion strain specific PrP deposits stained by thiophene-based amyloid ligands. Prion 2014; 8:319-29; PMID:25495506; https://doi.org/10.4161/pri.29239
  • Nilsson KP. Small organic probes as amyloid specific ligands–past and recent molecular scaffolds. FEBS Lett 2009; 583:2593-9; PMID:19376114; https://doi.org/10.1016/j.febslet.2009.04.016
  • Taylor DM. Inactivation of prions by physical and chemical means. J Hosp Infect 1999; 43(Suppl):S69-76; PMID:10658760; https://doi.org/10.1016/S0195-6701(99)90067-1
  • Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton AL, et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 2006; 313:1781-4; PMID:16990547; https://doi.org/10.1126/science.1131864
  • Fritschi SK, Cintron A, Ye L, Mahler J, Buhler A, Baumann F, Neumann M, Nilsson KP, Hammarström P, Walker LC, et al. Abeta seeds resist inactivation by formaldehyde. Acta Neuropathol 2014; 128:477-84; PMID:25193240; https://doi.org/10.1007/s00401-014-1339-2
  • Spiropoulos J, Lockey R, Sallis RE, Terry LA, Thorne L, Holder TM, Beck KE, Simmons MM. Isolation of prion with BSE properties from farmed goat. Emerg Infect Dis 2011; 17:2253-61; PMID:22172149; https://doi.org/10.3201/eid1712.110333
  • Ye L, Fritschi SK, Schelle J, Obermuller U, Degenhardt K, Kaeser SA, Eisele YS, Walker LC, Baumann F, Staufenbiel M, et al. Persistence of Abeta seeds in APP null mouse brain. Nat Neurosci 2015; 18:1559-61; PMID:26352792; https://doi.org/10.1038/nn.4117
  • Diack AB, Alibhai JD, Barron R, Bradford B, Piccardo P, Manson JC. Insights into mechanisms of chronic neurodegeneration. Int J Mol Sci 2016; 17:pii: E82
  • Langer F, Eisele YS, Fritschi SK, Staufenbiel M, Walker LC, Jucker M. Soluble Abeta seeds are potent inducers of cerebral beta-amyloid deposition. J Neurosci 2011; 31:14488-95; PMID:21994365; https://doi.org/10.1523/JNEUROSCI.3088-11.2011
  • Meyer RK, McKinley MP, Bowman KA, Braunfeld MB, Barry RA, Prusiner SB. Separation and properties of cellular and scrapie prion proteins. Proc Natl Acad Sci U S A 1986; 83:2310-4; PMID:3085093; https://doi.org/10.1073/pnas.83.8.2310
  • Fritschi SK, Langer F, Kaeser SA, Maia LF, Portelius E, Pinotsi D, Kaminski CF, Winkler DT, Maetzler W, Keyvani K, et al. Highly potent soluble amyloid-beta seeds in human Alzheimer brain but not cerebrospinal fluid. Brain 2014; 137:2909-15; PMID:25212850; https://doi.org/10.1093/brain/awu255
  • Tzaban S, Friedlander G, Schonberger O, Horonchik L, Yedidia Y, Shaked G, Gabizon R, Taraboulos A. Protease-sensitive scrapie prion protein in aggregates of heterogeneous sizes. Biochemistry 2002; 41:12868-75; PMID:12379130; https://doi.org/10.1021/bi025958g
  • Jarrett JT, Lansbury PT Jr. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 1993; 73:1055-8; PMID:8513491; https://doi.org/10.1016/0092-8674(93)90635-4
  • Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 2013; 501:45-51; PMID:24005412; https://doi.org/10.1038/nature12481
  • Rosen RF, Fritz JJ, Dooyema J, Cintron AF, Hamaguchi T, Lah JJ, LeVine H 3rd, Jucker M, Walker LC. Exogenous seeding of cerebral beta-amyloid deposition in betaAPP-transgenic rats. J Neurochem 2012; 120:660-6; PMID:22017494; https://doi.org/10.1111/j.1471-4159.2011.07551.x
  • Morales R, Duran-Aniotz C, Castilla J, Estrada LD, Soto C. De novo induction of amyloid-beta deposition in vivo. Mol Psychiatry 2012; 17:1347-53; PMID:21968933; https://doi.org/10.1038/mp.2011.120
  • Collinge J, Clarke AR. A general model of prion strains and their pathogenicity. Science 2007; 318:930-6; PMID:17991853; https://doi.org/10.1126/science.1138718
  • Aguzzi A, Heikenwalder M, Polymenidou M. Insights into prion strains and neurotoxicity. Nat Rev Mol Cell Biol 2007; 8:552-61; PMID:17585315; https://doi.org/10.1038/nrm2204
  • Petkova AT, Leapman RD, Guo Z, Yau WM, Mattson MP, Tycko R. Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science 2005; 307:262-5; PMID:15653506; https://doi.org/10.1126/science.1105850
  • Tycko R. Amyloid Polymorphism: Structural Basis and Neurobiological Relevance. Neuron 2015; 86:632-45; PMID:25950632; https://doi.org/10.1016/j.neuron.2015.03.017
  • Tycko R. Alzheimer's disease: Structure of aggregates revealed. Nature 2016; 537:492-3; PMID:27626376; https://doi.org/10.1038/nature19470
  • Spirig T, Ovchinnikova O, Vagt T, Glockshuber R. Direct Evidence for Self-Propagation of Different Amyloid-beta Fibril Conformations. Neurodegener Dis 2014; 14:151-9; PMID:25300967; https://doi.org/10.1159/000363623
  • Stohr J, Condello C, Watts JC, Bloch L, Oehler A, Nick M, DeArmond SJ, Giles K, DeGrado WF, Prusiner SB. Distinct synthetic Abeta prion strains producing different amyloid deposits in bigenic mice. Proc Natl Acad Sci U S A 2014; 111:10329-34; PMID:24982137; https://doi.org/10.1073/pnas.1408968111
  • Watts JC, Condello C, Stohr J, Oehler A, Lee J, DeArmond SJ, Lannfelt L, Ingelsson M, Giles K, Prusiner SB. Serial propagation of distinct strains of Abeta prions from Alzheimer's disease patients. Proc Natl Acad Sci U S A 2014; 111:10323-8; PMID:24982139; https://doi.org/10.1073/pnas.1408900111
  • Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R. Molecular structure of beta-amyloid fibrils in Alzheimer's disease brain tissue. Cell 2013; 154:1257-68; PMID:24034249; https://doi.org/10.1016/j.cell.2013.08.035
  • Heilbronner G, Eisele YS, Langer F, Kaeser SA, Novotny R, Nagarathinam A, Aslund A, Hammarström P, Nilsson KP, Jucker M. Seeded strain-like transmission of beta-amyloid morphotypes in APP transgenic mice. EMBO Rep 2013; 14:1017-22; PMID:23999102; https://doi.org/10.1038/embor.2013.137
  • Cohen M, Appleby B, Safar JG. Distinct prion-like strains of amyloid beta implicated in phenotypic diversity of Alzheimer's disease. Prion 2016; 10:9-17; PMID:26809345; https://doi.org/10.1080/19336896.2015.1123371
  • Novotny R, Langer F, Mahler J, Skodras A, Vlachos A, Wegenast-Braun BM, Kaeser SA, Neher JJ, Eisele YS, Pietrowski MJ, et al. Conversion of synthetic abeta to in vivo active seeds and amyloid plaque formation in a hippocampal slice culture model. J Neurosci 2016; 36:5084-93; PMID:27147660; https://doi.org/10.1523/JNEUROSCI.0258-16.2016
  • Wisniewski HM, Bancher C, Barcikowska M, Wen GY, Currie J. Spectrum of morphological appearance of amyloid deposits in Alzheimer's disease. Acta Neuropathol 1989; 78:337-47; PMID:2551122; https://doi.org/10.1007/BF00688170
  • Rosen RF, Ciliax BJ, Wingo TS, Gearing M, Dooyema J, Lah JJ, Ghiso JA, LeVine H 3rd, Walker LC. Deficient high-affinity binding of Pittsburgh compound B in a case of Alzheimer's disease. Acta Neuropathol 2010; 119:221-33; PMID:19690877; https://doi.org/10.1007/s00401-009-0583-3
  • Qiang W, Yau WM, Lu JX, Collinge J, Tycko R. Structural variation in amyloid-beta fibrils from Alzheimer's disease clinical subtypes. Nature 2017; 541:217-21; PMID:28052060; https://doi.org/10.1038/nature20814
  • Cohen ML, Kim C, Haldiman T, ElHag M, Mehndiratta P, Pichet T, Lissemore F, Shea M, Cohen Y, Chen W, et al. Rapidly progressive Alzheimer's disease features distinct structures of amyloid-beta. Brain 2015; 138:1009-22; PMID:25688081; https://doi.org/10.1093/brain/awv006
  • Philipson O, Lord A, Lalowski M, Soliymani R, Baumann M, Thyberg J, Bogdanovic N, Olofsson T, Tjernberg LO, Ingelsson M, et al. The Arctic amyloid-beta precursor protein (AbetaPP) mutation results in distinct plaques and accumulation of N- and C-truncated Abeta. Neurobiol Aging 2012; 33:1010. e1-13; https://doi.org/10.1016/j.neurobiolaging.2011.10.022
  • Buyukmihci N, Goehringharmon F, Marsh RF. Neural pathogenesis of experimental scrapie after intraocular inoculation of hamsters. Exp Neurol 1983; 81:396-406; PMID:6683661; https://doi.org/10.1016/0014-4886(83)90271-6
  • Fraser H. Neuronal spread of scrapie agent and targeting of lesions within the retino-tectal pathway. Nature 1982; 295:149-50; PMID:6173756; https://doi.org/10.1038/295149a0
  • Kimberlin RH, Walker CA. Pathogenesis of scrapie (strain 263K) in hamsters infected intracerebrally, intraperitoneally or intraocularly. J Gen Virol 1986; 67(Pt 2):255-63; PMID:3080549; https://doi.org/10.1099/0022-1317-67-2-255
  • Liberski PP, Hainfellner JA, Sikorska B, Budka H. Prion protein (PrP) deposits in the tectum of experimental Gerstmann-Straussler-Scheinker disease following intraocular inoculation. Folia Neuropathol 2012; 50:85-8; PMID:22505367
  • Hamaguchi T, Eisele YS, Varvel NH, Lamb BT, Walker LC, Jucker M. The presence of Abeta seeds, and not age per se, is critical to the initiation of Abeta deposition in the brain. Acta Neuropathol 2012; 123:31-7; PMID:22101366; https://doi.org/10.1007/s00401-011-0912-1
  • Ye L, Hamaguchi T, Fritschi SK, Eisele YS, Obermuller U, Jucker M, Walker LC. Progression of seed-induced abeta deposition within the limbic connectome. Brain Pathol 2015; 25:743-52; PMID:25677332; https://doi.org/10.1111/bpa.12252
  • Domert J, Rao SB, Agholme L, Brorsson AC, Marcusson J, Hallbeck M, Nath S. Spreading of amyloid-beta peptides via neuritic cell-to-cell transfer is dependent on insufficient cellular clearance. Neurobiol Dis 2014; 65:82-92; PMID:24412310; https://doi.org/10.1016/j.nbd.2013.12.019
  • Nath S, Agholme L, Kurudenkandy FR, Granseth B, Marcusson J, Hallbeck M. Spreading of neurodegenerative pathology via neuron-to-neuron transmission of beta-amyloid. J Neurosci 2012; 32:8767-77; PMID:22745479; https://doi.org/10.1523/JNEUROSCI.0615-12.2012
  • Hu X, Crick SL, Bu G, Frieden C, Pappu RV, Lee JM. Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc Natl Acad Sci U S A 2009; 106:20324-9; PMID:19910533; https://doi.org/10.1073/pnas.0911281106
  • Marzesco AM, Flotenmeyer M, Buhler A, Obermuller U, Staufenbiel M, Jucker M, Baumann F. Highly potent intracellular membrane-associated Abeta seeds. Sci Rep 2016; 6:28125; PMID:27311744; https://doi.org/10.1038/srep28125
  • Eisele YS, Obermuller U, Heilbronner G, Baumann F, Kaeser SA, Wolburg H, Walker LC, Staufenbiel M, Heikenwalder M, Jucker M. Peripherally applied Abeta-containing inoculates induce cerebral beta-amyloidosis. Science 2010; 330:980-2; PMID:20966215; https://doi.org/10.1126/science.1194516
  • Eisele YS, Fritschi SK, Hamaguchi T, Obermuller U, Fuger P, Skodras A, Schäfer C, Odenthal J, Heikenwalder M, Staufenbiel M, et al. Multiple factors contribute to the peripheral induction of cerebral beta-amyloidosis. J Neurosci 2014; 34:10264-73; PMID:25080588; https://doi.org/10.1523/JNEUROSCI.1608-14.2014
  • Jaunmuktane Z, Mead S, Ellis M, Wadsworth JD, Nicoll AJ, Kenny J, Launchbury F, Linehan J, Richard-Loendt A, Walker AS, et al. Evidence for human transmission of amyloid-beta pathology and cerebral amyloid angiopathy. Nature 2015; 525:247-50; PMID:26354483; https://doi.org/10.1038/nature15369
  • Frontzek K, Lutz MI, Aguzzi A, Kovacs GG, Budka H. Amyloid-beta pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt-Jakob disease after dural grafting. Swiss Med Wkly 2016; 146:w14287; PMID:26812492
  • Kovacs GG, Lutz MI, Ricken G, Strobel T, Hoftberger R, Preusser M, Regelsberger G, Hönigschnabl S, Reiner A, Fischer P, et al. Dura mater is a potential source of Abeta seeds. Acta Neuropathol 2016; 131:911-23; PMID:27016065; https://doi.org/10.1007/s00401-016-1565-x
  • Hamaguchi T, Taniguchi Y, Sakai K, Kitamoto T, Takao M, Murayama S, Iwasaki Y, Yoshida M, Shimizu H, Kakita A, et al. Significant association of cadaveric dura mater grafting with subpial Abeta deposition and meningeal amyloid angiopathy. Acta Neuropathol 2016; 132:313-5; PMID:27314593; https://doi.org/10.1007/s00401-016-1588-3
  • Ritchie DL, Adlard P, Peden AH, Lowrie S, Le Grice M, Burns K, et al. Amyloid-β accumulation in the CNS in human growth hormone recipients in the UK. Acta Neuropathol 2017; https://doi.org/10.1007/s00401-017-1703-0
  • Gotz J, Chen F, van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 2001; 293:1491-5; PMID:11520988; https://doi.org/10.1126/science.1062097
  • Vasconcelos B, Stancu IC, Buist A, Bird M, Wang P, Vanoosthuyse A, Van Kolen K, Verheyen A, Kienlen-Campard P, Octave JN, et al. Heterotypic seeding of Tau fibrillization by pre-aggregated Abeta provides potent seeds for prion-like seeding and propagation of Tau-pathology in vivo. Acta Neuropathol 2016; 13:549-69; https://doi.org/10.1007/s00401-015-1525-x
  • Irwin DJ, Abrams JY, Schonberger LB, Leschek EW, Mills JL, Lee VM, Trojanowski JQ. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol 2013; 70:462-8; PMID:23380910; https://doi.org/10.1001/jamaneurol.2013.1933
  • Goedert M, Masuda-Suzukake M, Falcon B. Like prions: the propagation of aggregated tau and alpha-synuclein in neurodegeneration. Brain 2017; 140:266-78; PMID:27658420; https://doi.org/10.1093/brain/aww230
  • Brown P, Brandel JP, Sato T, Nakamura Y, MacKenzie J, Will RG, Ladogana A, Pocchiari M, Leschek EW, Schonberger LB. Iatrogenic Creutzfeldt-Jakob disease, final assessment. Emerg Infect Dis 2012; 18:901-7; PMID:22607808; https://doi.org/10.3201/eid1806.120116
  • Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, et al. Clinical and biomarker changes in dominantly inherited Alzheimer's disease. N Engl J Med 2012; 367:795-804; PMID:22784036; https://doi.org/10.1056/NEJMoa1202753
  • Stohr J, Watts JC, Mensinger ZL, Oehler A, Grillo SK, DeArmond SJ, Prusiner SB, Giles K. Purified and synthetic Alzheimer's amyloid beta (Abeta) prions. Proc Natl Acad Sci U S A 2012; 109:11025-30; PMID:22711819; https://doi.org/10.1073/pnas.1206555109
  • Miller MB, Wang DW, Wang F, Noble GP, Ma J, Woods VL, Jr, Li S, Supattapone S. Cofactor molecules induce structural transformation during infectious prion formation. Structure 2013; 21:2061-8; PMID:24120764; https://doi.org/10.1016/j.str.2013.08.025
  • Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science 1982; 216:136-44; PMID:6801762; https://doi.org/10.1126/science.6801762
  • Dundr M. Seed and grow: a two-step model for nuclear body biogenesis. J Cell Biol 2011; 193:605-6; PMID:21576389; https://doi.org/10.1083/jcb.201104087
  • Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KP, Simon R, Schubert D, et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 2009; 325:328-32; PMID:19541956; https://doi.org/10.1126/science.1173155
  • March ZM, King OD, Shorter J. Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease. Brain Res 2016; 1647:9-18; PMID:26996412; https://doi.org/10.1016/j.brainres.2016.02.037
  • Nizhnikov AA, Antonets KS, Bondarev SA, Inge-Vechtomov SG, Derkatch IL. Prions, amyloids, and RNA: Pieces of a puzzle. Prion 2016; 10:182-206; PMID:27248002; https://doi.org/10.1080/19336896.2016.1181253
  • Si K, Kandel ER. The Role of Functional Prion-Like Proteins in the Persistence of Memory. Cold Spring Harb Perspect Biol 2016; 8:a021774; PMID:27037416; https://doi.org/10.1101/cshperspect.a021774
  • Walker LC, Jucker M. The exceptional vulnerability of humans to Alzheimer's disease. Trends Mol Med 2017; 23:534-45; PMID:28483344; https://doi.org/10.1016/j.molmed.2017.04.001