723
Views
3
CrossRef citations to date
0
Altmetric
Extra View

Neuronal pathophysiology featuring PrPC and its control over Ca2+ metabolism

ORCID Icon &
Pages 28-33 | Received 13 Oct 2017, Accepted 28 Nov 2017, Published online: 05 Jan 2018

References

  • Prusiner SB. Prions. Proc Natl Acad Sci USA. 1998;95(23):13363–83. doi:10.1073/pnas.95.23.13363.
  • Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci. 2017;4:19. doi:10.3389/fmolb.2017.00019.
  • Peggion C, Bertoli A, Sorgato MC. Almost a century of prion protein(s): From pathology to physiology, and back to pathology. Biochem Biophys Res Commun. 2017;483(4):1148–55. doi:10.1016/j.bbrc.2016.07.118.
  • Wulf MA, Senatore A, Aguzzi A. The biological function of the cellular prion protein: an update. BMC Biol. 2017;15(1):34. doi:10.1186/s12915-017-0375-5.
  • Zahn R, Liu A, Lührs T, et al. NMR solution structure of the human prion protein. Proc Natl Acad Sci USA. 2000;97(1):145–50. doi:10.1073/pnas.97.1.145.
  • van der Lee R, Buljan M, Lang B, et al. et al. Classification of intrinsically disordered regions and proteins. Chem Rev. 2014;114(13):6589–631. doi:10.1021/cr400525m.
  • Tompa P, Schad E, Tantos A, et al. Intrinsically disordered proteins: emerging interaction specialists. Curr Opin Struct Biol. 2015;35:49–59. doi:10.1016/j.sbi.2015.08.009.
  • Uversky VN, Oldfield CJ, Dunker AK. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys. 2008;37:215–46. doi:10.1146/annurev.biophys.37.032807.125924.
  • Uversky VN. Intrinsically disordered proteins and their (disordered) proteomes in neurodegenerative disorders. Front Aging Neurosci. 2015;7:18. doi:10.3389/fnagi.2015.00018.
  • Berridge MJ. Calcium microdomains: organization and function. Cell Calcium. 2006;40(5–6):405–12. doi:10.1016/j.ceca.2006.09.002.
  • Mattson MP. Calcium and neurodegeneration. Aging Cell. 2007;6(3):337–50. doi:10.1111/j.1474-9726.2007.00275.x.
  • Um JW, Nygaard HB, Heiss JK, et al. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat Neurosci. 2012;15(9):1227–35. doi:10.1038/nn.3178.
  • Wong K, Qiu Y, Hyun W, et al. Decreased receptor-mediated calcium response in prion-infected cells correlates with decreased membrane fluidity and IP3 release. Neurology. 1996;47(3):741–50. doi:10.1212/WNL.47.3.741.
  • Fuhrmann M, Bittner T, Mitteregger G, et al. Loss of the cellular prion protein affects the Ca2+ homeostasis in hippocampal CA1 neurons. J Neurochem. 2006;98(6):1876–85. doi:10.1111/j.1471-4159.2006.04011.x.
  • Peggion C, Bertoli A, Sorgato MC. Possible role for Ca2+ in the pathophysiology of the prion protein? Biofactors. 2011;37(3):241–9. doi:10.1002/biof.161.
  • Khosravani H, Zhang Y, Tsutsui S, et al. et al. Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. J Cell Biol. 2008;181(3):551–65. doi:10.1083/jcb.200711002.
  • Lim D, Bertoli A, Sorgato MC, et al. Generation and usage of aequorin lentiviral vectors for Ca(2+) measurement in sub-cellular compartments of hard-to-transfect cells. Cell Calcium. 2016;59(5):228–39. doi:10.1016/j.ceca.2016.03.001.
  • Suzuki J, Kanemaru K, Iino M. Genetically Encoded Fluorescent Indicators for Organellar Calcium Imaging. Biophys J. 2016;111(6):1119–31. doi:10.1016/j.bpj.2016.04.054.
  • Prakriya M, Lewis RS. Store-Operated Calcium Channels. Physiol Rev. 2015;95(4):1383–436. doi:10.1152/physrev.00020.2014.
  • Lazzari C, Peggion C, Stella R, et al. Cellular prion protein is implicated in the regulation of local Ca2+ movements in cerebellar granule neurons. J Neurochem. 2011;116(5):881–90. doi:10.1111/j.1471-4159.2010.07015.x.
  • De Mario A, Castellani A, Peggion C, Massimino ML, et al. The prion protein constitutively controls neuronal store-operated Ca(2+) entry through Fyn kinase. Front Cell Neurosci. 2015;9:416. doi:10.3389/fncel.2015.00416.
  • Resenberger UK, Harmeier A, Woerner AC, et al. et al. The cellular prion protein mediates neurotoxic signalling of β-sheet-rich conformers independent of prion replication. EMBO J. 2011;30(10):2057–70. doi:10.1038/emboj.2011.86.
  • Laurén J, Gimbel DA, Nygaard HB, et al. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature. 2009;457(7233):1128–32. doi:10.1038/nature07761.
  • De Mario A, Peggion C, Massimino ML, Viviani F, et al. The prion protein regulates glutamate-mediated Ca(2+) entry and mitochondrial Ca(2+) accumulation in neurons. J Cell Sci. 2017;130(16):2736–46. doi:10.1242/jcs.196972.
  • Rangel A, Burgaya F, Gavín R, et al. Enhanced susceptibility of Prnp-deficient mice to kainate-induced seizures, neuronal apoptosis, and death: Role of AMPA/kainate receptors. J Neurosci Res. 2007;85(12):2741–55. doi:10.1002/jnr.21215.
  • Carulla P, Bribián A, Rangel A, et al. Neuroprotective role of PrPC against kainate-induced epileptic seizures and cell death depends on the modulation of JNK3 activation by GluR6/7-PSD-95 binding. Mol Biol Cell. 2011;22(17):3041–54. doi:10.1091/mbc.E11-04-0321.
  • Black SA, Stys PK, Zamponi GW, et al. Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity. Front Cell Dev Biol. 2014;2:45. doi:10.3389/fcell.2014.00045.
  • Carulla P, Llorens F, Matamoros-Angles A, et al. Involvement of PrP(C) in kainate-induced excitotoxicity in several mouse strains. Sci Rep. 2015;5:11971. doi:10.1038/srep11971.
  • Bertani I, Iori V, Trusel M, et al. Inhibition of IL-1β Signaling Normalizes NMDA-Dependent Neurotransmission and Reduces Seizure Susceptibility in a Mouse Model of Creutzfeldt-Jakob Disease. J Neurosci. 2017;37(43):10278–89. doi:10.1523/JNEUROSCI.1301-17.2017.
  • Diering GH, Heo S, Hussain NK, et al. Extensive phosphorylation of AMPA receptors in neurons. Proc Natl Acad Sci USA. 2016;113(33):E4920–7. doi:10.1073/pnas.1610631113.
  • Song RS, Massenburg B, Wenderski W, et al. ERK regulation of phosphodiesterase 4 enhances dopamine-stimulated AMPA receptor membrane insertion. Proc Natl Acad Sci USA. 2013;110(38):15437–42. doi:10.1073/pnas.1311783110.
  • Bernardi P, Rasola A, Forte M, et al. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev. 2015;95(4):1111–55. doi:10.1152/physrev.00001.2015.
  • You H, Tsutsui S, Hameed S, et al. Aβ neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proc Natl Acad Sci USA. 2012;109(5):1737–42. doi:10.1073/pnas.1110789109.
  • Sorgato MC, Peggion C, Bertoli A. Is, indeed, the prion protein a Harlequin servant of “many” masters? Prion. 2009;3(4):202–5. PMID: 19887913.
  • West AE, Chen WG, Dalva MB, et al. Calcium regulation of neuronal gene expression. Proc Natl Acad Sci USA. 2001;98(20):11024–31. doi:10.1073/pnas.191352298.
  • Stella R, Cifani P, Peggion C, et al. Relative quantification of membrane proteins in wild-type and prion protein (PrP)-knockout cerebellar granule neurons. J Proteome Res. 2012;11(2):523–36. doi:10.1021/pr200759m.
  • Darbellay B, Arnaudeau S, König S, et al. STIM1- and Orai1-dependent store-operated calcium entry regulates human myoblast differentiation. J Biol Chem. 2009;284(8):5370–80. doi:10.1074/jbc.M806726200.
  • Prodromidou K, Papastefanaki F, Sklaviadis T, et al. Functional cross-talk between the cellular prion protein and the neural cell adhesion molecule is critical for neuronal differentiation of neural stem/precursor cells. Stem Cells. 2014;32(6):1674–87. doi:10.1002/stem.1663.
  • Devine MJ, Birsa N, Kittler JT. Miro sculpts mitochondrial dynamics in neuronal health and disease. Neurobiol Dis. 2016;90:27–34. doi:10.1016/j.nbd.2015.12.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.