1,259
Views
26
CrossRef citations to date
0
Altmetric
Research Paper

Aberrant adhesion impacts early development in a Dictyostelium model for juvenile neuronal ceroid lipofuscinosis

, &
Pages 399-418 | Received 15 Jun 2016, Accepted 06 Sep 2016, Published online: 24 Oct 2016

References

  • Williams RE. Appendix 1: NCL incidence and prevalence data. In: Mole SE, Williams RE, Goebel HH, editors. The neuronal ceroid lipofuscinoses (Batten Disease), second edition. Oxford: Oxford University Press; 2011. p. 361-5.
  • Williams RE, Mole SE. New nomenclature and classification scheme for the neuronal ceroid lipofuscinoses. Neurology 2012; 79:183-91; PMID:22778232; https://doi.org/10.1212/WNL.0b013e31825f0547
  • Mole SE, Cotman SL. Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochim Biophys Acta 2015; 1852:2237-41; PMID:26026925; https://doi.org/10.1016/j.bbadis.2015.05.011
  • Schulz A, Kohlschütter A, Mink J, Simonati A, Williams R. NCL diseases – clinical perspectives. Biochim Biophys Acta 2013; 1832:1801-6; PMID:23602993; https://doi.org/10.1016/j.bbadis.2013.04.008
  • Radke J, Stenzel W, Goebel HH. Human NCL Neuropathology. Biochim Biophys Acta 2015; 1852:2262-6; PMID:25989315; https://doi.org/10.1016/j.bbadis.2015.05.007
  • The International Batten Disease Consortium. Isolation of a novel gene underlying Batten disease, CLN3. Cell 1995; 82:949-57; PMID:7553855; https://doi.org/10.1016/0092-8674(95)90274-0
  • Cotman SL, Staropoli JF. The juvenile Batten disease protein, CLN3, and its role in regulating anterograde and retrograde post-Golgi trafficking. Clin Lipidol 2012; 7:79-91; PMID:22545070; https://doi.org/10.2217/clp.11.70
  • Faller KM, Gutierrez-Quintana R, Mohammed A, Rahim AA, Tuxworth RI, Wager K, Bond M. The neuronal ceroid lipofuscinoses: Opportunities from model systems. Biochim Biophys Acta 2015; 1852:2267-78; PMID:25937302; https://doi.org/10.1016/j.bbadis.2015.04.022
  • Luiro K, Yliannala K, Ahtiainen L, Maunu H, Järvelä I, Kyttälä A, Jalanko A. Interconnections of CLN3, Hook1 and Rab proteins link Batten disease to defects in the endocytic pathway. Hum Mol Genet 2004; 13:3017-27; PMID:15471887; https://doi.org/10.1093/hmg/ddh321
  • Fossale E, Wolf P, Espinola JA, Lubicz-Nawrocka T, Teed AM, Gao H, Rigamonti D, Cattaneo E, MacDonald ME, Cotman SL. Membrane trafficking and mitochondrial abnormalities precede subunit c deposition in a cerebellar cell model of juvenile neuronal ceroid lipofuscinosis. BMC Neurosci 2004; 5:57; PMID:15588329; https://doi.org/10.1186/1471-2202-5-57
  • Cao Y, Espinola JA, Fossale E, Massey AC, Cuervo AM, MacDonald ME, Cotman SL. Autophagy is disrupted in a knock-in mouse model of juvenile neuronal ceroid lipofuscinosis. J Biol Chem 2006; 281:20483-93; PMID:16714284; https://doi.org/10.1074/jbc.M602180200
  • Stein CS, Yancey PH, Martins I, Sigmund RD, Stokes JB, Davidson BL. Osmoregulation of ceroid neuronal lipofuscinosis type 3 in the renal medulla. Am J Physiol Cell Physiol 2010; 298:1388-1400; https://doi.org/10.1152/ajpcell.00272.2009
  • Cao Y, Staropoli JF, Biswas S, Espinola JA, MacDonald ME, Lee JM, Cotman SL. Distinct early molecular responses to mutations causing vLINCL and JNCL presage ATP synthase subunit C accumulation in cerebellar cells. PLoS One 2011; 6:e17118; PMID:21359198; https://doi.org/10.1371/journal.pone.0017118
  • An Haack K, Narayan SB, Li H, Warnock A, Tan L, Bennett MJ. Screening for calcium channel modulators in CLN3 siRNA knock down SH-SY5Y neuroblastoma cells reveals a significant decrease of intracellular calcium levels by selected L-type calcium channel blockers. Biochim Biophys Acta 2011; 1810:186-91; PMID:20933060; https://doi.org/10.1016/j.bbagen.2010.09.004
  • Uusi-Rauva K, Kyttälä A, van der Kant R, Vesa J, Tanhuanpää K, Neefjes J, Olkkonen VM, Jalanko A. Neuronal ceroid lipofuscinosis protein CLN3 interacts with motor proteins and modifies location of late endosomal compartments. Cell Mol Life Sci 2012; 69:2075-89; PMID:22261744; https://doi.org/10.1007/s00018-011-0913-1
  • Kang S, Kim JB, Heo TH, Kim SJ. Cell cycle arrest in Batten disease lymphoblast cells. Gene 2013; 519:245-50; PMID:23458879; https://doi.org/10.1016/j.gene.2013.02.022
  • Warnock A, Tan L, Li C, An Haack K, Narayan SB, Bennett MJ. Amlodipine prevents apoptotic cell death by correction of elevated intracellular calcium in a primary neuronal model of Batten disease (CLN3 disease). Biochem Biophys Res Commun 2013; 436:645-9; PMID:23769828; https://doi.org/10.1016/j.bbrc.2013.04.113
  • Vidal-Donet JM, Cárcel-Trullols J, Casanova B, Aguado C, Knecht E. Alterations in ROS activity and lysosomal pH account for distinct patterns of macroautophagy in LINCL and JNCL fibroblasts. PLoS One 2013; 8:e55526; PMID:23408996; https://doi.org/10.1371/journal.pone.0055526
  • Tecedor T, Stein CS, Schultz ML, Farwanah H, Sandhoff K, Davidson BL. CLN3 loss disturbs membrane microdomain properties and protein transport in brain endothelial cells. J Neurosci 2013; 33:18065-79; PMID:24227717; https://doi.org/10.1523/JNEUROSCI.0498-13.2013
  • Lojewski X, Staropoli JF, Biswas-Legrand S, Simas AM, Haliw L, Selig MK, Coppel SH, Goss KA, Petcherski A, Chandrachud U, et al. Human iPSC models of neuronal ceroid lipofuscinosis capture distinct effects of TPP1 and CLN3 mutations on the endocytic pathway. Hum Mol Genet 2014; 23:2005-22; PMID:24271013; https://doi.org/10.1093/hmg/ddt596
  • Zhu X, Huang Z, Chen Y, Zhou J, Hu S, Zhi Q, Song S, Wang Y, Wan D, Gu W, et al. Effect of CLN3 silencing by RNA interference on the proliferation and apoptosis of human colorectal cancer cells. Biomed Pharmacother 2014; 68:253-8; PMID:24556023; https://doi.org/10.1016/j.biopha.2013.12.010
  • Chandrachud U, Walker MW, Simas AM, Heetveld S, Petcherski A, Klein M, Oh H, Wolf P, Zhao WN, Norton S, et al. Unbiased cell-based screening in a neuronal cell model of Batten disease highlights an interaction between Ca2+ homeostasis, autophagy, and CLN3 protein function. J Biol Chem 2015; 290:14361-80; PMID:25878248; https://doi.org/10.1074/jbc.M114.621706
  • Myre MA. Clues to γ-secretase, huntingtin and Hirano body normal function using the model organism Dictyostelium discoideum. J Biomed Sci 2012; 19:41; PMID:22489754; https://doi.org/10.1186/1423-0127-19-41
  • Annesley SJ, Chen S, Francione LM, Sanislav O, Chavan AJ, Farah C, De Piazza SW, Storey CL, Ilievska J, Fernando SG, Smith PK, Lay ST, Fisher PR. Dictyostelium, a microbial model for brain disease. Biochim Biophys Acta 2014; 1840:1413-32; PMID:24161926; https://doi.org/10.1016/j.bbagen.2013.10.019
  • McMains VC, Myre M, Kreppel L, Kimmel AR. Dictyostelium possesses highly diverged presenilin/gamma-secretase that regulates growth and cell-fate specification and can accurately process human APP: a system for functional studies of the presenilin/gamma-secretase complex. Dis Model Mech 2010; 3:581-94; PMID:20699477; https://doi.org/10.1242/dmm.004457
  • Meyer I, Kuhnert O, Gräf R. Functional analyses of lissencephaly-related proteins in Dictyostelium. Semin Cell Dev Biol 2011; 22:89-96; PMID:21034843; https://doi.org/10.1016/j.semcdb.2010.10.007
  • Kortholt A, Gilsbach B, van Haastert PJM. Dictyostelium discoideum: A model system to study LRRK2-mediated Parkinson disease. In: Dushanova J, editor. Mechanisms in Parkinson disease - Models and treatments. Croatia: InTech; 2012. p. 293-310
  • Myre MA, Lumsden AL, Thompson MN, Wasco W, MacDonald ME, Gusella JF. Deficiency of huntingtin has pleiotropic effects in the social amoeba Dictyostelium discoideum. PLoS Genet 2011; 7:e1002052; PMID:21552328; https://doi.org/10.1371/journal.pgen.1002052
  • Huber RJ, Myre MA, Cotman SL. Loss of Cln3 function in the social amoeba Dictyostelium discoideum causes pleiotropic effects that are rescued by human CLN3. PLoS One 2014; 9:e110544; PMID:25330233; https://doi.org/10.1371/journal.pone.0110544
  • Phillips JE, Gomer RH. Partial genetic suppression of a loss of function mutant of the neuronal ceroid lipofuscinosis-associated protease TPP1 in Dictyostelium discoideum. Dis Model Mech 2015; 8:147-56; PMID:25540127; https://doi.org/10.1242/dmm.018820
  • Muller-Taubenberger A, Kortholt A, Eichinger L. Simple system - substantial share: The use of Dictyostelium in cell biology and molecular medicine. Eur J Cell Biol 2013; 92:45-53; PMID:23200106; https://doi.org/10.1016/j.ejcb.2012.10.003
  • Getty AL, Benedict JW, Pearce DA. A novel interaction of CLN3 with nonmuscle myosin-IIB and defects in cell motility of Cln3(−/−) cells. Exp Cell Res 2011; 317:51-69; PMID:20850431; https://doi.org/10.1016/j.yexcr.2010.09.007
  • Schultz ML, Tecedor L, Stein CS, Stamnes MA, Davidson BL. CLN3 deficient cells display defects in the ARF1-Cdc42 pathway and actin-dependent events. PLoS One 2014; 9:e96647; PMID:24792215; https://doi.org/10.1371/journal.pone.0096647
  • Rot G, Parikh A, Curk T, Kuspa A, Shaulsky G, Zupan B. dictyExpress: A Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface. BMC Bioinformatics 2009; 10:256; PMID:19695104; https://doi.org/10.1186/1471-2105-10-265
  • Fok AK, Clarke M, Ma L, Allen RD. Vacuolar H+-ATPase of Dictyostelium discoideum. A monoclonal antibody study. J Cell Sci 1993; 106:1103-13; PMID:8126094
  • Journet A, Chapel A, Jehan S, Adessi C, Freeze H, Klein G, Garin J. Characterization of Dictyostelium discoideum cathepsin D: Molecular cloning, gene disruption, endo-lysosomal localization and sugar modifications. J Cell Sci 1999; 112:3833-43; PMID:10523518
  • Ravanel K, de Chassey B, Cornillon S, Benghezal M, Zulianello L, Gebbie L, Letourneur F, Cosson P. Membrane sorting in the endocytic and phagocytic pathway of Dictyostelium discoideum. Eur J Cell Biol 2001; 80:754-64; PMID:11831389; https://doi.org/10.1078/0171-9335-00215
  • Benghezal M, Gotthardt D, Cornillon S, Cosson P. Localization of the Rh50-like protein to the contractile vacuole in Dictyostelium. Immunogenetics 2001; 52:284-8; PMID:11220631; https://doi.org/10.1007/s002510000279
  • Darmon M, Barra J, Brachet P. The role of phosphodiesterase in aggregation of Dictyostelium discoideum. J Cell Sci 1978; 31:233-43; PMID:209055
  • McDonald CJ, Sampson J. The effects of inhibition of protein glycosylation on the aggregation of Dictyostelium discoideum. J Embryol Exp Morphol 1983; 78:229-48; PMID:6319528
  • Tarantola M, Bae A, Fuller D, Bodenschatz E, Rappel WJ, Loomis WF. Cell substratum adhesion during early development of Dictyostelium discoideum. PLoS One 2014; 9:e106574; PMID:25247557; https://doi.org/10.1371/journal.pone.0106574
  • Tanaka Y, Itakura R, Amagai A, Maeda Y. The signals for starvation response are transduced through elevated [Ca2+]i in Dictyostelium cells. Exp Cell Res 1998; 240:340-8; PMID:9597007; https://doi.org/10.1006/excr.1998.3947
  • Brzostowski JA, Johnson C, Kimmel AR. Galpha-mediated inhibition of developmental signal response. Curr Biol 2002; 12:1199-208; PMID:12176329; https://doi.org/10.1016/S0960-9822(02)00953-3
  • Bakthavatsalam D, Choe JM, Hanson NE, Gomer RH. A Dictyostelium chalone uses G proteins to regulate proliferation. BMC Biol 2009; 7:44; PMID:19635129; https://doi.org/10.1186/1741-7007-7-44
  • Siu CH, Sriskanthadevan S, Wang J, Hou L, Chen G, Xu X, Thomson A, Yang C. Regulation of spatiotemporal expression of cell-cell adhesion molecules during development of Dictyostelium discoideum. Dev Growth Differ 2011; 53:518-27; PMID:21585356; https://doi.org/10.1111/j.1440-169X.2011.01267.x
  • Murray BA, Niman HL, Loomis WF. Monoclonal antibody recognizing gp80, a membrane glycoprotein implicated in intercellular adhesion of Dictyostelium discoideum. Mol Cell Biol 1983; 3:863-70; PMID:6191197; https://doi.org/10.1128/MCB.3.5.863
  • Muller K, Gerisch G. A specific glycoprotein as the target site of adhesion blocking Fab in aggregating Dictyostelium cells. Nature 1978; 274:445-9; PMID:566857; https://doi.org/10.1038/274445a0
  • Stadler J, Keenan TW, Bauer G, Gerisch G. The contact site A glycoprotein of Dictyostelium discoideum carries a phospholipid anchor of a novel type. EMBO J 1989; 8:371-7; PMID:2721485
  • Hohmann HP, Bozzaro S, Yoshida M, Merkl R, Gerisch G. Two-step glycosylation of the contact site A protein of Dictyostelium discoideum and transport of an incompletely glycosylated form to the cell surface. J Biol Chem 1987; 262:16618-24; PMID:3316223
  • Hohmann HP, Bozzaro S, Merkl R, Wallraff E, Yoshida M, Weinhart U, Gerisch G. Post-translational glycosylation of the contact site A protein of Dictyostelium discoideum is important for stability but not for its function in cell adhesion. EMBO J 1987; 6:3663-71; PMID:16453812
  • Yamada H, Hirano T, Miyazaki T, Takatsuki A, Tamura G. Effects of tunicamycin on cell adhesion and biosynthesis of glycoproteins in aggregation-competent cells of Dictyostelium discoideum. J Biochem 1982; 92:399-406; PMID:6813319
  • Coates JC, Harwood AJ. Cell-cell adhesion and signal transduction during Dictyostelium development. J Cell Sci 2001; 114:4349-58; PMID:11792801
  • Knecht DA, Fuller DL, Loomis WF. Surface glycoprotein, gp24, involved in early adhesion of Dictyostelium discoideum. Dev Biol 1987; 121:277-83; PMID:3569662; https://doi.org/10.1016/0012-1606(87)90160-6
  • Wong EFS, Brar SK, Sesaki H, Yang C, Siu C-H. Molecular cloning and characterization of DdCAD-1, a Ca2+-dependent cell-cell adhesion molecule, in Dictyostelium discoideum. J Biol Chem 1996; 271:16399-408; PMID:8663243; https://doi.org/10.1074/jbc.271.27.16399
  • Sesaki H, Siu C-H. Novel redistribution of the Ca2+-dependent cell adhesion molecule DdCAD-1 during development of Dictyostelium discoideum. Dev Biol 1996; 177:504-11; PMID:8806827; https://doi.org/10.1006/dbio.1996.0181
  • Choi AH, Siu CH. Filopodia are enriched in a cell cohesion molecule of Mr 80,000 and participate in cell-cell contact formation in Dictyostelium discoideum. J Cell Biol 1987; 104:1375-87; PMID:3553212; https://doi.org/10.1083/jcb.104.5.1375
  • Sesaki H, Wong EF, Siu CH. The cell adhesion molecule DdCAD-1 in Dictyostelium is targeted to the cell surface by a nonclassical transport pathway involving contractile vacuoles. J Cell Biol 1997; 138:939-51; PMID:9265658; https://doi.org/10.1083/jcb.138.4.939
  • Bakthavatsalam D, Gomer RH. The secreted proteome profile of developing Dictyostelium discoideum cells. Proteomics 2010; 10:2556-9; PMID:20422638; https://doi.org/10.1002/pmic.200900516
  • Huber RJ, O'Day DH. Proteomic profiling of the extracellular matrix (slime sheath) of Dictyostelium discoideum. Proteomics 2015; 15:3315-9; PMID:26152465; https://doi.org/10.1002/pmic.201500143
  • Okimura C, Ueda K, Sakumura Y, Iwadate Y. Fast-crawling cell types migrate to avoid the direction of periodic substratum stretching. Cell Adh Migr 2016; in press;
  • Gomer RH, Yuen IS, Firtel RA. A secreted 80 ´ 10(3) Mr protein mediates sensing of cell density and the onset of development in Dictyostelium. Development 1991; 112:269-78; PMID:1663029
  • Brock DA, Gomer RH. A cell-counting factor regulating structure size in Dictyostelium. Genes Dev 1999; 13:1960-9; PMID:10444594; https://doi.org/10.1101/gad.13.15.1960
  • Roisin-Bouffay C, Jang W, Caprette DR, Gomer RH. A precise group size in Dictyostelium is generated by a cell-counting factor modulating cell-cell adhesion. Mol Cell 2000; 6:953-9; PMID:11090633; https://doi.org/10.1016/S1097-2765(05)00082-1
  • Siu C-H, Harris TJC, Wong EFS, Yang C, Sesaki H, Wang J. Cell adhesion molecules in Dictyostelium. In: Maeda Y, Inouye K, Takeuchi I, editors. Dictyostelium – A model system for cell and developmental Biology. Tokyo: University Academy Press; 1997. p. 111-21
  • Sriskanthadevan S, Brar SK, Manoharan K, Siu CH. Ca(2+) -calmodulin interacts with DdCAD-1 and promotes DdCAD-1 transport by contractile vacuoles in Dictyostelium cells. FEBS J 2013; 280:1795-806; PMID:23441816; https://doi.org/10.1111/febs.12203
  • Yang C, Hou L, Yang Q, Siu CH. ATP-binding cassette transporter B4 anchors the cell adhesion molecule DdCAD-1 to cell membrane in Dictyostelium discoideum. Indian J Microbiol 2013; 53:460-6; PMID:24426151; https://doi.org/10.1007/s12088-013-0393-0
  • Desbarats L, Brar SK, Siu CH. Involvement of cell-cell adhesion in the expression of the cell cohesion molecule gp80 in Dictyostelium discoideum. J Cell Sci 1994; 107:1705-12; PMID:7962211
  • Gosain A, Lohia R, Shrivastava A, Saran S. Identification and characterization of peptide: N-glycanase from Dictyostelium discoideum. BMC Biochem 2012; 13:9; PMID:22682495; https://doi.org/10.1186/1471-2091-13-9
  • Prabhu Y, Müller R, Anjard C, Noegel AA. GrlJ, a Dictyostelium GABAB-like receptor with roles in post-aggregation development. BMC Dev Biol 2007; 7:44; PMID:17501984; https://doi.org/10.1186/1471-213X-7-44
  • Kawata T, Hirano T, Ogasawara S, Aoshima R, Yachi A. Evidence for a functional link between Dd-STATa and Dd-PIAS, a Dictyostelium PIAS homologue. Dev Growth Differ 2011; 53:897-909; PMID:21933174; https://doi.org/10.1111/j.1440-169X.2011.01296.x
  • Schaloske RH, Lusche DF, Bezares-Roder K, Happle K, Malchow D, Schlatterer C. Ca2+ regulation in the absence of the iplA gene product in Dictyostelium discoideum. BMC Cell Biol 2005; 6:13; PMID:15760480; https://doi.org/10.1186/1471-2121-6-13
  • Lusche DF, Wessels D, Soll DR. The effects of extracellular calcium on motility, pseudopod and uropod formation, chemotaxis, and the cortical localization of myosin II in Dictyostelium discoideum. Cell Motil Cytoskeleton 2009; 66:567-87; PMID:19363786; https://doi.org/10.1002/cm.20367
  • Scherer A, Kuhl S, Wessels D, Lusche DF, Raisley B, Soll DR. Ca2+ chemotaxis in Dictyostelium discoideum. J Cell Sci 2010; 123:3756-67; PMID:20940253; https://doi.org/10.1242/jcs.068619
  • Poloz Y, O'Day DH. Ca2+ signaling regulates ecmB expression, cell differentiation and slug regeneration in Dictyostelium. Differentiation 2012; 84:163-75; PMID:22595345; https://doi.org/10.1016/j.diff.2012.02.009
  • Malchow D, Lusche DF, Schlatterer C, De Lozanne A, Müller-Taubenberger A. The contractile vacuole in Ca2+-regulation in Dictyostelium: its essential function for cAMP-induced Ca2+-influx. BMC Dev Biol 2006; 6:31; PMID:16787542; https://doi.org/10.1186/1471-213X-6-31
  • Zhu Q, Clarke M. Association of calmodulin and an unconventional myosin with the contractile vacuole complex of Dictyostelium discoideum. J Cell Biol 1992; 118:347-58; PMID:1629238; https://doi.org/10.1083/jcb.118.2.347
  • Fey P, Kowal AS, Gaudet P, Pilcher KE, Chisholm RL. Protocols for growth and development of Dictyostelium discoideum. Nat Protoc 2007; 2:1307-16; PMID:17545967; https://doi.org/10.1038/nprot.2007.178
  • Levi S, Polyakov M, Egelhoff TT. Green fluorescent protein and epitope tag fusion vectors for Dictyostelium discoideum. Plasmid 2000; 44:231-8; PMID:11078649; https://doi.org/10.1006/plas.2000.1487
  • Brar SK, Siu CH. Characterization of the cell adhesion molecule gp24 in Dictyostelium discoideum. Mediation of cell-cell adhesion via a Ca(2+)-dependent mechanism. J Biol Chem 1993; 268:24902-9; PMID:8227052
  • Das S, Rericha EC, Bagorda A, Parent CA. Direct biochemical measurements of signal relay during Dictyostelium development. J Biol Chem 2011; 286:38649-58; PMID:21911494; https://doi.org/10.1074/jbc.M111.284182
  • O'Day DH. Aggregation during sexual development in Dictyostelium discoideum. Can J Microbiol 1979; 25:1416-26; PMID:231480; https://doi.org/10.1139/m79-221
  • Bozzaro S. Assaying cell-cell adhesion. Methods Mol Biol 2006; 346:449-67; PMID:16957307
  • Hagedorn M, Neuhaus EM, Soldati T. Optimized fixation and immunofluorescence staining methods for Dictyostelium cells. Methods Mol Biol 2006; 346:327-38; PMID:16957300
  • Charette SJ, Cosson P. Exocytosis of late endosomes does not directly contribute membrane to the formation of phagocytic cups or pseudopods in Dictyostelium. FEBS Lett 2006; 580:4923-8; PMID:16920105; https://doi.org/10.1016/j.febslet.2006.08.009
  • Thompson MN, MacDonald ME, Gusella JF, Myre MA. Huntingtin supplies a csaA-independent function essential for EDTA-resistant homotypic cell adhesion in Dictyostelium discoideum. J Huntingtons Dis 2014; 3:261-71; PMID:25300330

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.