521
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Copine C plays a role in adhesion and streaming in Dictyostelium

ORCID Icon, , , , &
Pages 1-19 | Received 21 Dec 2022, Accepted 02 Feb 2024, Published online: 20 Feb 2024

References

  • Creutz CE, Tomsig JL, Snyder SL, et al. The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipid-binding proteins conserved from paramecium to humans. J Biol Chem. 1998;273(3):1393–1402. doi: 10.1074/jbc.273.3.1393
  • Damer CK, Bayeva M, Hahn ES, et al. Copine A, a calcium-dependent membrane-binding protein, transiently localizes to the plasma membrane and intracellular vacuoles in Dictyostelium. BMC Cell Biol. 2005;6(1):46. doi: 10.1186/1471-2121-6-46
  • Ilacqua AN, Price JE, Graham BN, et al. Cyclic AMP signaling in dictyostelium promotes the translocation of the copine family of calcium-binding proteins to the plasma membrane. BMC Cell Biol. 2018;19(1):13. doi: 10.1186/s12860-018-0160-5
  • Wang Q, Jiang M, Isupov MN, et al. The crystal structure Of arabidopsis BON1 provides insights into the copine protein family. Plant J. 2020;103(3):1215–1232. doi: 10.1111/tpj.14797
  • Tomsig JL, Snyder SL, Creutz CE. Identification of targets for calcium signaling through the copine family of proteins. Characterization of a coiled-coil copine-binding motif. J Biol Chem. 2003;278(12):10048–10054. doi: 10.1074/jbc.M212632200
  • Perestenko PV, Pooler AM, Noorbakhshnia M, et al. Copines-1, -2, -3, -6 and -7 show different calcium-dependent intracellular membrane translocation and targeting. FEBS J. 2010;277(24):5174–5189. doi: 10.1111/j.1742-4658.2010.07935.x
  • Yang DL, Shi Z, Bao Y, et al. Calcium pumps and interacting BON1 protein modulate calcium signature, stomatal closure, and plant immunity. Plant Physiol. 2017;175(1):424–437. doi: 10.1104/pp.17.00495
  • Goel M, Aponte AM, Wistow G, et al. Molecular studies into cell biological role of copine-4 in Retinal Ganglion Cells. PloS One. 2021;16(11):e0255860. doi: 10.1371/journal.pone.0255860
  • Tang H, Pang P, Qin Z, et al. The CPNE family and their role in cancers. Front Genet. 2021;12:689097. doi: 10.3389/fgene.2021.689097
  • Sakthivel KM, Prabhu VV., Prabhu VV. Copine 3 as a novel potential drug target for non-small-cell lung carcinoma. J Environ Pathol Toxicol Oncol. 2017;36(2):107–112. doi: 10.1615/JEnvironPatholToxicolOncol.2017019540
  • Ahmat Amin MKB, Shimizu A, Zankov DP, et al. Epithelial membrane protein 1 promotes tumor metastasis by enhancing cell migration via copine-III and Rac1. Oncogene. 2018;37(40):5416–5434. doi: 10.1038/s41388-018-0286-0
  • Chen Z, Jiang Z, Zhang W, et al. Silencing the expression of copine-iii enhances the sensitivity of hepatocellular carcinoma cells to the molecular targeted agent sorafenib. Cancer Manag Res. 2018;10:3057–3067. doi: 10.2147/CMAR.S167781
  • Jiang Z, Jiang J, Zhao B, et al. CPNE1 silencing inhibits the proliferation, invasion and migration of human osteosarcoma cells. Oncol Rep. 2018;39(2):643–650. doi: 10.3892/or.2017.6128
  • Nagasawa S, Ikeda K, Horie-Inoue K, et al. Systematic identification of characteristic genes of ovarian clear cell carcinoma compared with high-grade serous carcinoma based on RNA-sequencing. Int J Mol Sci. 2019;20(18):4330. doi: 10.3390/ijms20184330
  • Heinrich C, Keller C, Boulay A, et al. Copine-III interacts with ErbB2 and promotes tumor cell migration. Oncogene. 2010;29(11):1598–1610. doi: 10.1038/onc.2009.456
  • Shi D, Lin B, Lai J, et al. Upregulation of CPNE3 suppresses invasion, migration and proliferation of glioblastoma cells through FAK pathway inactivation. J Mol Histol. 2021;52(3):589–596. doi: 10.1007/s10735-021-09966-0
  • Kessin RH. Cell motility: making streams. Nature. 2003;422(6931):481–482. doi: 10.1038/422481a
  • Damer CK, Bayeva M, Kim PS, et al. Copine a is required for cytokinesis, contractile vacuole function, and development in dictyostelium. Eukaryot Cell. 2007;6(3):430–442. doi: 10.1128/EC.00322-06
  • Buccilli MJ, Ilacqua AN, Han M, et al. Copine a Interacts with actin filaments and plays a role in chemotaxis and adhesion. Cells. 2019;8(7):758. doi: 10.3390/cells8070758
  • Ide AD, Wight EM, Damer CK, et al. Phosphatidylserine exposure promotes increased adhesion in dictyostelium copine a mutants. PloS One. 2021;16(5):e0250710. doi: 10.1371/journal.pone.0250710
  • Bonner JT. The migration stage of dictyostelium: behavior without muscles or nerves. FEMS Microbiol Lett. 1994;120(1–2):1–7. doi: 10.1111/j.1574-6968.1994.tb06997.x
  • King JS, Insall RH. Insall RH. Chemotaxis: finding the way forward with dictyostelium. Trends Cell Biol. 2009;19(10):523–530. doi: 10.1016/j.tcb.2009.07.004
  • Artemenko Y, Lampert TJ, Devreotes PN. Moving towards a paradigm: common mechanisms of chemotactic signaling in dictyostelium and mammalian leukocytes. Cell Mol Life Sci. 2014;71(19):3711–3747. doi: 10.1007/s00018-014-1638-8
  • Noegel A, Witke W, Schleicher M. Calcium-sensitive non-muscle α-actinin contains EF-hand structures and highly conserved regions. FEBS Lett. 1987;221(2):391–396. doi: 10.1016/0014-5793(87)80962-6
  • Bukharova T, Weijer G, Bosgraaf L, et al. Paxillin is required for cell-substrate adhesion, cell sorting and slug migration during dictyostelium development. J Cell Sci. 2005;118(18):4295–4310. doi: 10.1242/jcs.02557
  • Cornillon S, Gebbie L, Benghezal M, et al. An adhesion molecule in free-living dictyostelium amoebae with integrin β features. EMBO Rep. 2006;7(6):617–621. doi: 10.1038/sj.embor.7400701
  • Kreitmeier M, Gerisch G, Heizer C, et al. A talin homologue of dictyostelium rapidly assembles at the leading edge of cells in response to chemoattractant. J Cell Bio. 1995;129(1):179–188. doi: 10.1083/jcb.129.1.179
  • Siu CH, Lam TY, Choi AHC. Inhibition of cell-cell binding at the aggregation stage of dictyostelium discoideum development by monoclonal antibodies directed against an 80,000-dalton surface glycoprotein. J Biol Chem. 1985;260(29):16030–16036. doi: 10.1016/S0021-9258(17)36361-5
  • Knecht DA, Shelden E. Three-dimensional localization of wild-type and myosin II mutant cells during morphogenesis of dictyostelium. Dev Biol. 1995;170(2):434–444. doi: 10.1006/dbio.1995.1227
  • Harloff C, Gerisch G, Noegel AA. Selective elimination of the contact site a protein of dictyostelium discoideum by gene disruption. Genes Dev. 1989;3(12 A):2011–2019. doi: 10.1101/gad.3.12a.2011
  • Loomis WF. Genetic control of morphogenesis in dictyostelium. Dev Biology. 2015;402(2):146–161. doi: 10.1016/j.ydbio.2015.03.016
  • Hohmann HP, Bozzaro S, Merkl R, et al. Post-translational glycosylation of the contact site a protein of Dictyostelium discoideum is important for stability but not for its function in cell adhesion. EMBO J. 1987;6(12):3663–3671. doi: 10.1002/j.1460-2075.1987.tb02699.x
  • Singleton CK, Xiong Y, Harwood A. Loss of the histidine kinase DhkD results in Mobile mounds during development of dictyostelium discoideum. PloS One. 2013;8(9):e75618. doi: 10.1371/journal.pone.0075618
  • Chang WT. Evidence that the RdeA protein is a component of a multistep phosphorelay modulating rate of development in dictyostelium. EMBO J. 1998;17(10):2809–2816. doi: 10.1093/emboj/17.10.2809
  • Hanssen F,Garcia MU, Folkersen L et al. Scalable and efficient DNA sequencing analysis on different compute infrastructures aiding variant discovery. 2023. doi: 10.1101/2023.07.19.549462
  • Thomason PA, Traynor D, Stock JB, et al. The RdeA-RegA system, a eukaryotic phospho-relay controlling cAMP breakdown. J Biol Chem. 1999;274(39):27379–27384. doi: 10.1074/jbc.274.39.27379
  • Adhikari N, Kuburich NA, Hadwiger JA. Mitogen-activated protein kinase regulation of the phosphodiesterase RegA in early dictyostelium development. Microbiology. 2020;166(2):129–140. doi: 10.1099/mic.0.000868
  • Tekinay T, Ennis HL, Wu MY, et al. Genetic interactions of the E3 ubiquitin ligase component FbxA with cyclic AMP metabolism and a histidine kinase signaling pathway during dictyostelium discoideum development. Eukaryot Cell. 2003;2(3):618–626. doi: 10.1128/EC.2.3.618-626.2003
  • Cheon S, Kaur K, Nijem N, et al. The ubiquitin ligase UBE3B, disrupted in intellectual disability and absent speech, regulates metabolic pathways by targeting BCKDK. Proc Natl Acad Sci U S A. 2019;116(9):3662–3667. doi: 10.1073/pnas.1818751116
  • Garcia M, Juhos S, Larsson M, et al. Sarek: a portable workflow for whole-genome sequencing analysis of germline and somatic variants. F1000Res. 2020;9:63. doi: 10.12688/f1000research.16665.2
  • Ewels PA, Peltzer A, Fillinger S, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020;38(3):276–278. doi: 10.1038/s41587-020-0439-x
  • Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013. doi: 10.48550/ARXIV.1303.3997
  • McKenna A, Hanna M, Banks E, et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–1303. doi: 10.1101/gr.107524.110
  • Chen X, Schulz-Trieglaff O, Shaw R, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32:1220–1222. doi: 10.1093/bioinformatics/btv710
  • Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi: 10.1093/bioinformatics/btp352
  • Quinlan AR, Hall IM. Bedtools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842. doi: 10.1093/bioinformatics/btq033
  • R Core Team. 2021. R: A language and environment for statistical computing.
  • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2
  • Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14(2):178–192. doi: 10.1093/bib/bbs017
  • Thomason PA, Traynor D, Cavet G, et al. An intersection of the cAMP/PKA and two-component signal transduction systems in dictyostelium. EMBO J. 1998;17(10):2838–2845. doi: 10.1093/emboj/17.10.2838
  • Wessels DJ, Zhang H, Reynolds J, et al. The internal phosphodiesterase regA is essential for the suppression of lateral pseudopods during dictyostelium chemotaxis. Mol Biol Cell. 2000;11(8):2803–2820. doi: 10.1091/mbc.11.8.2803
  • Stajdohar M, Rosengarten RD, Kokosar J, et al. dictyExpress: a web-based platform for sequence data management and analytics in dictyostelium and beyond. BMC Bioinf. 2017;18(1):291.
  • Katoh-Kurasawa M, Hrovatin K, Hirose S, et al. Transcriptional milestones in Dictyostelium development. Genome Res. 2021 Aug;31(8):1498–1511. doi: 10.1101/gr.275496.121. Epub 2021 Jun 28. PMID: 34183452; PMCID: PMC8327917
  • Ramsey CS, Yeung F, Stoddard PB, et al. Copine-I represses NF-kappaB transcription by endoproteolysis of p65. Oncogene. 27(25): 3516–3526. 2008 Jun 5. 10.1038/sj.onc.1211030. Epub 2008 Jan 21. PMID: 18212740.