1,152
Views
8
CrossRef citations to date
0
Altmetric
Extra View

Coupling of growth to nutritional status: The role of novel periphery-to-brain signaling by the CCHa2 peptide in Drosophila melanogaster

Pages 183-187 | Received 08 Dec 2015, Accepted 02 Mar 2016, Published online: 16 Mar 2016

References

  • Hietakangas V, Cohen SM. Regulation of tissue growth through nutrient sensing. Annu Rev Genet 2009; 43:389-410; PMID:19694515; http://dx.doi.org/10.1146/annurev-genet-102108-134815
  • Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, Leopold P. A nutrient sensor mechanism controls Drosophila growth. Cell 2003; 114:739-49; PMID:14505573; http://dx.doi.org/10.1016/S0092-8674(03)00713-X
  • Rajan A, Perrimon N. Drosophila cytokine unpaired 2 regulates physiological homeostasis by remotely controlling insulin secretion. Cell 2012; 151:123-37; PMID:23021220; http://dx.doi.org/10.1016/j.cell.2012.08.019
  • Geminard C, Rulifson EJ, Leopold P. Remote control of insulin secretion by fat cells in Drosophila. Cell metabolism 2009; 10:199-207; PMID:19723496; http://dx.doi.org/10.1016/j.cmet.2009.08.002
  • Roller L, Yamanaka N, Watanabe K, Daubnerova I, Zitnan D, Kataoka H, Tanaka Y. The unique evolution of neuropeptide genes in the silkworm Bombyx mori. Insect Biochem Mol Biol 2008; 38:1147-57; PMID:19280707; http://dx.doi.org/10.1016/j.ibmb.2008.04.009
  • Hansen KK, Hauser F, Williamson M, Weber SB, Grimmelikhuijzen CJ. The Drosophila genes CG14593 and CG30106 code for G-protein-coupled receptors specifically activated by the neuropeptides CCHamide-1 and CCHamide-2. Biochem Biophys Res Commun 2011; 404:184-9; PMID:21110953; http://dx.doi.org/10.1016/j.bbrc.2010.11.089
  • Ida T, Takahashi T, Tominaga H, Sato T, Sano H, Kume K, Ozaki M, Hiraguchi T, Shiotani H, Terajima S, et al. Isolation of the bioactive peptides CCHamide-1 and CCHamide-2 from Drosophila and their putative role in appetite regulation as ligands for G protein-coupled receptors. Front Endocrinol 2012; 3:177; PMID:23293632; http://dx.doi.org/10.3389/fendo.2012.00177
  • Reiher W, Shirras C, Kahnt J, Baumeister S, Isaac RE, Wegener C. Peptidomics and peptide hormone processing in the Drosophila midgut. J Proteome Res 2011; 10:1881-92; PMID:21214272; http://dx.doi.org/10.1021/pr101116g
  • Sano H, Nakamura A, Texada MJ, Truman JW, Ishimoto H, Kamikouchi A, Nibu Y, Kume K, Ida T, Kojima M. The Nutrient-Responsive Hormone CCHamide-2 Controls Growth by Regulating Insulin-like Peptides in the Brain of Drosophila melanogaster. PLoS genetics 2015; 11:e1005209; PMID:26020940; http://dx.doi.org/10.1371/journal.pgen.1005209
  • Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 2001; 11:213-21; PMID:11250149; http://dx.doi.org/10.1016/S0960-9822(01)00068-9
  • Rulifson EJ, Kim SK, Nusse R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 2002; 296:1118-20; PMID:12004130; http://dx.doi.org/10.1126/science.1070058
  • Blad CC, Tang C, Offermanns S. G protein-coupled receptors for energy metabolites as new therapeutic targets. Nat Rev Drug Discovery 2012; 11:603-19; PMID:22790105; http://dx.doi.org/10.1038/nrd3777
  • Okamoto N, Nishimori Y, Nishimura T. Conserved role for the Dachshund protein with Drosophila Pax6 homolog Eyeless in insulin expression. Proc Natl Acad Sci U S A 2012; 109:2406-11; PMID:22308399; http://dx.doi.org/10.1073/pnas.1116050109
  • Okamoto N, Nishimura T. Signaling from Glia and Cholinergic Neurons Controls Nutrient-Dependent Production of an Insulin-like Peptide for Drosophila Body Growth. Dev Cell 2015; 35:295-310; PMID:26555050; http://dx.doi.org/10.1016/j.devcel.2015.10.003
  • DeSalvo MK, Mayer N, Mayer F, Bainton RJ. Physiologic and anatomic characterization of the brain surface glia barrier of Drosophila. Glia 2011; 59:1322-40; PMID:21351158; http://dx.doi.org/10.1002/glia.21147
  • Stork T, Engelen D, Krudewig A, Silies M, Bainton RJ, Klambt C. Organization and function of the blood-brain barrier in Drosophila. J Neurosci 2008; 28:587-97; PMID:18199760; http://dx.doi.org/10.1523/JNEUROSCI.4367-07.2008
  • Gronke S, Clarke DF, Broughton S, Andrews TD, Partridge L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS genetics 2010; 6:e1000857; PMID:20195512; http://dx.doi.org/10.1371/journal.pgen.1000857
  • Miyamoto T, Slone J, Song X, Amrein H. A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 2012; 151:1113-25; PMID:23178127; http://dx.doi.org/10.1016/j.cell.2012.10.024
  • Hers HG. [The mechanism of the transformation of glucose in fructose in the seminal vesicles]. Biochimica et biophysica acta 1956; 22:202-3; PMID:13373872; http://dx.doi.org/10.1016/0006-3002(56)90247-5
  • Kim J, Neufeld TP. Dietary sugar promotes systemic TOR activation in Drosophila through AKH-dependent selective secretion of Dilp3. Nat Commun 2015; 6:6846; PMID:25882208; http://dx.doi.org/10.1038/ncomms7846
  • Cummings DE, Overduin J. Gastrointestinal regulation of food intake. J Clin Investig 2007; 117:13-23; PMID:17200702; http://dx.doi.org/10.1172/JCI30227
  • Cai XJ, Widdowson PS, Harrold J, Wilson S, Buckingham RE, Arch JR, Tadayyon M, Clapham JC, Wilding J, Williams G. Hypothalamic orexin expression: modulation by blood glucose and feeding. Diabetes 1999; 48:2132-7; PMID:10535445; http://dx.doi.org/10.2337/diabetes.48.11.2132
  • Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 1999; 98:437-51; PMID:10481909; http://dx.doi.org/10.1016/S0092-8674(00)81973-X
  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998; 92:573-85; PMID:9491897; http://dx.doi.org/10.1016/S0092-8674(00)80949-6
  • Ahima RS, Flier JS. Leptin. Annu Rev Physiol 2000; 62:413-37; PMID:10845097; http://dx.doi.org/10.1146/annurev.physiol.62.1.413
  • Baggerman G, Cerstiaens A, De Loof A, Schoofs L. Peptidomics of the larval Drosophila melanogaster central nervous system. The Journal of biological chemistry 2002; 277:40368-74; PMID:12171930; http://dx.doi.org/10.1074/jbc.M206257200
  • Baggerman G, Boonen K, Verleyen P, De Loof A, Schoofs L. Peptidomic analysis of the larval Drosophila melanogaster central nervous system by two-dimensional capillary liquid chromatography quadrupole time-of-flight mass spectrometry. J Mass Spectrom 2005; 40:250-60; PMID:15706625; http://dx.doi.org/10.1002/jms.744
  • Yew JY, Wang Y, Barteneva N, Dikler S, Kutz-Naber KK, Li L, Kravitz EA. Analysis of neuropeptide expression and localization in adult drosophila melanogaster central nervous system by affinity cell-capture mass spectrometry. J Proteome Res 2009; 8:1271-84; PMID:19199706; http://dx.doi.org/10.1021/pr800601x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.