4,486
Views
26
CrossRef citations to date
0
Altmetric
Methods and Technical Advances

Tools and strategies for scarless allele replacement in Drosophila using CRISPR/Cas9

, &
Pages 53-64 | Received 09 May 2016, Accepted 21 Jul 2016, Published online: 22 Aug 2016

References

  • Gratz SJ, Wildonger J, Harrison MM, O'Connor-Giles KM. CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand. Fly (Austin) 2013; 7:249-55; PMID:24088745; http://dx.doi.org/10.4161/fly.26566
  • Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA-guided activation of endogenous human genes. Nat Methods 2013; 10:977-9; PMID:23892898; http://dx.doi.org/10.1038/nmeth.2598
  • Gratz SJ, Rubinstein CD, Harrison MM, Wildonger J, O'Connor-Giles KM. CRISPR-Cas9 genome editing in Drosophila. In: Current protocols in molecular biology. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2015. page 31.2.1-31.2.20
  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013; 8:2281-308; PMID:24157548; http://dx.doi.org/10.1038/nprot.2013.143
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337:816-22; PMID:22745249; http://dx.doi.org/10.1126/science.1225829
  • Bassett AR, Liu JL. CRISPR/Cas9 and Genome Editing in Drosophila. J Genet Genomics 2014; 41:7-19; PMID:24480743; http://dx.doi.org/10.1016/j.jgg.2013.12.004
  • Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O'Connor-Giles KM. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 2013; 194:1029-35; PMID:23709638; http://dx.doi.org/10.1534/genetics.113.152710
  • Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio JJ. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol 2014; 32:819-21; PMID:24880488; http://dx.doi.org/10.1038/nbt.2925
  • Inui M, Miyado M, Igarashi M, Tamano M, Kubo A, Yamashita S, Asahara H, Fukami M, Takada S. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system. Sci Rep 2014; 4:5396; PMID:24953798; http://dx.doi.org/10.1038/srep05396
  • Böttcher R, Hollmann M, Merk K, Nitschko V, Obermaier C, Philippou-Massier J, Wieland I, Gaul U, Förstemann K. Efficient chromosomal gene modification with CRISPR/cas9 and PCR-based homologous recombination donors in cultured Drosophila cells. Nucleic Acids Res 2014; 42:e89; PMID:24748663; http://dx.doi.org/10.1093/nar/gku289
  • Stern DL, Orgogozo V. The loci of evolution: how predictable is genetic evolution? Evolution 2008; 62:2155-77; PMID:18616572; http://dx.doi.org/10.1111/j.1558-5646.2008.00450.x
  • Stam LF, Laurie CC. Molecular dissection of a major gene effect on a quantitative trait: The level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics 1996; 144:1559-64; PMID:8978044
  • Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS, Maixner W, Diatchenko L. Human Catechol-O-Methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 2006; 314:1930-3; PMID:17185601; http://dx.doi.org/10.1126/science.1131262
  • Miyaoka Y, Berman JR, Cooper SB, Mayerl SJ, Chan AH, Zhang B, Karlin-Neumann GA, Conklin BR. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep 2016; 6:23549; PMID:27030102; http://dx.doi.org/10.1038/srep23549
  • Yu Z, Chen H, Liu J, Zhang H, Yan Y, Zhu N, Guo Y, Yang B, Chang Y, Dai F, et al. Various applications of TALEN- and CRISPR/Cas9-mediated homologous recombination to modify the Drosophila genome. Biol Open 2014; 3:271-80; PMID:24659249; http://dx.doi.org/10.1242/bio.20147682
  • Sebo ZL, Lee HB, Peng Y, Guo Y. A simplified and efficient germline-specific CRISPR/Cas9 system for Drosophila genomic engineering. Fly (Austin) 2014; 8:52-7; PMID:24141137; http://dx.doi.org/10.4161/fly.26828
  • Bassett AR, Tibbit C, Ponting CP, Liu J-L. Highly efficient targeted mutagenesis of drosophila with the CRISPR/Cas9 system. Cell Rep 2013; 4:220-8; PMID:23827738; http://dx.doi.org/10.1016/j.celrep.2013.06.020
  • Zhang X, Koolhaas WH, Schnorrer F. A versatile two-step CRISPR- and RMCE-based strategy for efficient genome engineering in Drosophila. G3 (Bethesda) 2014; 4:2409-18; PMID:25324299; http://dx.doi.org/full_text
  • Kühn R, Chu VT. Pop in, pop out: a novel gene-targeting strategy for use with CRISPR-Cas9. Genome Biol 2015; 16:244; PMID:26553112; http://dx.doi.org/10.1186/s13059-015-0810-2
  • Xi L, Schmidt JC, Zaug AJ, Ascarrunz DR, Cech TR. A novel two-step genome editing strategy with CRISPR-Cas9 provides new insights into telomerase action and TERT gene expression. Genome Biol 2015; 16:231; PMID:26553065; http://dx.doi.org/10.1186/s13059-015-0791-1
  • Wittkopp PJ, Stewart EE, Arnold LL, Neidert AH, Haerum BK, Thompson EM, Akhras S, Smith-Winberry G, Shefner L. Intraspecific polymorphism to interspecific divergence: Genetics of pigmentation in drosophila. Science 2009; 326:540-4; PMID:19900891; http://dx.doi.org/10.1126/science.1176980
  • Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, O'Connor-Giles KM. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 2014; 196:961-71; PMID:24478335; http://dx.doi.org/10.1534/genetics.113.160713
  • Port F, Chen HM, Lee T, Bullock SL. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A 2014; 111:E2967-76; PMID:25002478; http://dx.doi.org/10.1073/pnas.1405500111
  • Kalay G. Rapid evolution of cis-regulatory architecture and activity in the Drosophila yellow gene. [dissertation]. [Ann Arbor]: University of Michigan; 2012. 197 p.
  • Gibson DG, Smith HO, Hutchison CA, Venter JC, Merryman C. Chemical synthesis of the mouse mitochondrial genome. Nat Methods 2010; 7:901-3; PMID:20935651; http://dx.doi.org/10.1038/nmeth.1515
  • Pardo B, Gómez-González B, Aguilera A. DNA repair in mammalian cells: DNA double-strand break repair: how to fix a broken relationship. Cell Mol Life Sci 2009; 66:1039-56; PMID:19153654; http://dx.doi.org/10.1007/s00018-009-8740-3
  • Holtzman S, Miller D, Eisman RC, Kuwayama H, Niimi T, Kaufman TC. Transgenic tools for members of the genus Drosophila with sequenced genomes. Fly (Austin) 2010; 4:349-62; PMID:20890112; http://dx.doi.org/10.4161/fly.4.4.13304
  • Dong S, Lin J, Held NL, Clem RJ, Passarelli AL, Franz AW. Heritable CRISPR/Cas9-Mediated genome editing in the yellow fever mosquito, Aedes aegypti. PLoS One 2015; 10:e0122353; PMID:25815482; http://dx.doi.org/10.1371/journal.pone.0122353
  • Griswold CM, Roebuck J, Anderson RO, Stam LF, Spana EP. A toolkit for transformation and mutagenesis in Drosophila using piggyBac. Drosoph Inf Serv 2002; 85:129-32
  • Perez C, Guyot V, Cabaniols J-P, Gouble A, Micheaux B, Smith J, Leduc S, Pâques F, Duchateau P. Factors affecting double-strand break-induced homologous recombination in mammalian cells. Biotechniques 2005; 39:109-15; PMID:16060375; http://dx.doi.org/10.2144/05391GT01
  • Wittkopp PJ, Vaccaro K, Carroll SB. Evolution of yellow gene regulation and pigmentation in Drosophila. Curr Biol 2002; 12:1547-56; PMID:12372246; http://dx.doi.org/10.1016/S0960-9822(02)01113-2
  • Jeong S, Rebeiz M, Andolfatto P, Werner T, True J, Carroll SB. The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 2008; 132:783-93; PMID:18329365; http://dx.doi.org/10.1016/j.cell.2008.01.014
  • Yassin A, Bastide H, Chung H, Veuille M, David JR, Pool JE. Ancient balancing selection at tan underlies female colour dimorphism in Drosophila erecta. Nat Commun 2016; 7:10400; PMID:26778363; http://dx.doi.org/10.1038/ncomms10400
  • Martin A, Serano JM, Jarvis E, Bruce HS, Wang J, Ray S, Barker CA, O'Connell LC, Patel NH. CRISPR/Cas9 mutagenesis reveals versatile roles of hox genes in crustacean limb specification and evolution. Curr Biol 2016; 26:14-26; PMID:26687626; http://dx.doi.org/10.1016/j.cub.2015.11.021
  • Kistler KE, Vosshall LB, Matthews BJ. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Cell Rep 2015; 11:51-60; PMID:25818303; http://dx.doi.org/10.1016/j.celrep.2015.03.009
  • Port F, Muschalik N, Bullock SL. Systematic evaluation of drosophila CRISPR tools reveals safe and robust alternatives to autonomous gene drives in basic research. G3 (Bethesda) 2015; 5:1493-502; PMID:25999583; http://dx.doi.org/full_text
  • Ren X, Sun J, Housden BE, Hu Y, Roesel C, Lin S, Liu L-P, Yang Z, Mao D, Sun L, et al. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci 2013; 110:19012-7; PMID:24191015; http://dx.doi.org/10.1073/pnas.1318481110
  • Beumer KJ, Trautman JK, Bozas A, Liu J-L, Rutter J, Gall JG, Carroll D. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci U S A 2008; 105:19821-6; PMID:19064913; http://dx.doi.org/10.1073/pnas.0810475105
  • Wong N, Liu W, Wang X. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol 2015; 16:218; PMID:26521937; http://dx.doi.org/10.1186/s13059-015-0784-0
  • Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, Yang S-J, Qiao H-H, Wang X, Hu Q, et al. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep 2014; 9:1151-62; PMID:25437567; http://dx.doi.org/10.1016/j.celrep.2014.09.044
  • Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M, Smith I, Sullender M, Ebert BL, Xavier RJ, Root DE. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat Biotechnol 2014; 32:1262-7; PMID:25184501; http://dx.doi.org/10.1038/nbt.3026
  • Bischof J, Maeda RK, Hediger M, Karch F, Basler K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci U S A 2007; 104:3312-7; PMID:17360644; http://dx.doi.org/10.1073/pnas.0611511104
  • Werner T, Koshikawa S, Williams TM, Carroll SB. Generation of a novel wing colour pattern by the Wingless morphogen. Nature 2010; 464:1143-8; PMID:20376004; http://dx.doi.org/10.1038/nature08896
  • Gloor G, Engels W. Single-fly DNA preps for PCR. Drosoph Inf Serv 1992; 71:148-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.